Cracking the Silos of Custom Workflows

By Nicole Hemsoth

February 27, 2014

In high performance computing, the time-honored concept of creating tailored workflows to address complex requirements is nothing new. However, with the advent of new tools to analyze and process data—not to mention store, sort and manage it—traditional ways of thinking about HPC workflows are falling by the wayside in favor of new approaches that might help balance, stabilize and shatter siloed environments.

Moving beyond HPC specifically, there are certainly plenty of options for managing large-scale, diverse workflows that are designed specifically for cloud environments, and increasingly, for “big data” workflows that require orchestration between custom and commercial analytics stacks, involving hops from private or public clouds, into Hadoop and over to other analytics engines. The issue is, while there are dedicated tools for addressing workflow demands of HPC environments specifically (GridEngine, Platform, Adaptive, etc.) , or cloud environments in particular (OpenStack, etc.), some, including Adaptive Computing, argue that there are no tools that tackle HPC, cloud and the new range of big data opportunities all together—and in a way that’s primed for the custom workflow models that are so often found in some of the most complex enterprise and research datacenters.

In their experience with large organizations including NOAA, the Department of Defense and others, Adaptive Computing has had the opportunity to look under the hoods of some complicated engines for doing everything from oil exploration to addressing national security concerns. These users—and around 60% of those they recently surveyed across the public and private sector (beyond HPC exclusively) tended to have custom, homegrown workflows, which often leads to a host of problems, including a lack of flexibility to adopt new tools, time consumption spent on manually handling the complexity, and of course, overall inefficiency across the datacenter.

That 60% is a striking figure when one considers that the advent of new tools being considered to address the growing bevy of “big data” problems means more custom scripting and management of an already top-heavy stack. According to Adaptive Computing’s Jill King, this means the addition of more silos, which is exactly the opposite of what’s needed for mission-critical environments. Adaptive’s answer to this complexity is called Big Workflow, which for now means addressing these homegrown environments with a different type of glue than has been used to bind many of the HPC centers they’ve worked with over the last ten years with Moab.

King says that for many datacenter environments across the HPC and big data spectrum, the logjam happens at the important processing stage for complex data. This is currently very manual, time-consuming and laden with dependencies and, according to conversations they’ve had across multiple organizations, they’re finding a lot of “both over and under-utilized silos with long, complicated cues that simply aren’t efficient. “There’s a great need to unify, optimize and guarantee these environments,” King said.

Adaptive Computing senior architect, Daniel Hardman offered detail on Big Workflow, which is both an approach that requires custom tuning for homegrown environments via dedicated work with customer needs—as well as offering some new hooks for big data analytics tooling.

As you can see below, there are several separate silos, all governed at the top by what’s very often either a sophisticated homegrown or off-the-shelf system. Generally, says Hardman, there are not efficient ways of connecting the top level with the many silos below—and further, that top level framework can be connected across many parts of the datacenter and spectrum of needs; for example, that same level might be governing general business operations, a Hadoop cluster, an interface to a cloud pulling data off storage, and an HPC environment on top of all of that. It’s quite possible to do all of this—but it’s hardly efficient or manageable and leads to inflexibility given the processes that need to be worked in manually for custom workflows when new hooks are needed or something changes.

BigWorkflow1

“There a big need for an engine that’s capable of implementing a policy-based engine across these silos,” said Hardman. “We already sell Moab cloud suite, and a comparable product in HPC, and offer an integration with the Intel Hadoop side, and although we’ve not done a lot on public cloud it’s also possible. What’s needed then is something that makes it so a user’s custom glue can tap into some efficiency and automation–a new kind of coordination so that our Big Workflow coordinator can contact these silos and make things happen across those many silo boundaries.”

The goal of Big Workflow (the coordinator is not a product as much as an approach rooted in some new hooks they’ve provided to big data sources via the Intel Hadoop distro and more) is to provide all the logic in hard-coded scripts, which Hardman says can eliminate a lot of the duct tape with management across these silos. They’re still there, but the distinction between them is a lot less painful.

BigWorkflow2

“Most people in IT think about equilibrium—keep things humming-if things get broken, they get fixed. The problem is that big data is not friendly to that; it has an interesting relationship to storage in that it may not be convenient to think about those silo boundaries anymore. For example, I might have the same dataset, which begins its life in a public cloud, then I need to process and massage it in Hadoop, then perform some HPC computation on it after that, but that data may have all sorts of issues (privacy, regulatory, etc) I can’t just move it around or pretend that it’s local when it’s not. It has to be managed with policies that understand data movement, staging, management and more. Big data makes this Big Workflow coordination mandatory.”

For those familiar with Adaptive or using it already, there is the addition of the “data expert” concept, which is the smart part of the engine that has to be able to understand all about the data (lifecycle, forms through that lifecycle and its movement, size, who owns it, where can it be copied or not). This is coupled with some of the new automation for custom workflows found in the coordinator. As King explained, “we’re integrating with these custom workflows for now,  then we’ll branch out and make these standards but with so many people having custom workflows, we need to be able to provide something flexible.” In other words, Adaptive is using lessons learned with customers like Digital Globe (see a detailed writeup of how this works in action over at EnterpriseTech) to propel their work for custom environments and implement those lessons as standards to help broaden their APIs and reach into more areas, including tools like Tivoli, for instance.

This approach should resonate for folks in HPC and enterprise circles, according to IDC. “Our 2013 study revealed that a surprising two thirds of HPC sites are now performing big data analysis as part of their HPC workloads, as well as an uptick in combined uses of cloud computing and supercomputing,” said Chirag Dekate, Ph.D., research manager, High-Performance Systems at IDC. “As there is no shortage of big data to analyze and no sign of it slowing down, combined uses of cloud and HPC will occur with greater frequency, creating market opportunities for solutions such as Adaptive’s Big Workflow.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is enjoying a prosperity seen only every few decades, one driven Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, produ Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that d Read more…

By Doug Black

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

New Data Management Techniques for Intelligent Simulations

The trend in high performance supercomputer design has evolved – from providing maximum compute capability for complex scalable science applications, to capacity computing utilizing efficient, cost-effective computing power for solving a small number of large problems or a large number of small problems. Read more…

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competition. This is the twelfth time that teams of university undergr Read more…

By Dan Olds

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is en Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competitio Read more…

By Dan Olds

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

OpenACC Talks Up Summit and Community Momentum at SC18

November 12, 2018

OpenACC – the directives-based parallel programing model for optimizing applications on heterogeneous architectures – is showcasing user traction and HPC im Read more…

By John Russell

How ASCI Revolutionized the World of High-Performance Computing and Advanced Modeling and Simulation

November 9, 2018

The 1993 Supercomputing Conference was held in Portland, Oregon. That conference and it’s show floor provided a good snapshot of the uncertainty that U.S. supercomputing was facing in the early 1990s. Many of the companies exhibiting that year would soon be gone, either bankrupt or acquired by somebody else. Read more…

By Alex R. Larzelere

At SC18: GM, Boeing, Deere, BP Talk Enterprise HPC Strategies

November 9, 2018

SC18 in Dallas (Nov.11-16) will feature an impressive series of sessions focused on the enterprise HPC deployments at some of the largest industrial companies: Read more…

By Doug Black

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Leading Solution Providers

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This