Cracking the Silos of Custom Workflows

By Nicole Hemsoth

February 27, 2014

In high performance computing, the time-honored concept of creating tailored workflows to address complex requirements is nothing new. However, with the advent of new tools to analyze and process data—not to mention store, sort and manage it—traditional ways of thinking about HPC workflows are falling by the wayside in favor of new approaches that might help balance, stabilize and shatter siloed environments.

Moving beyond HPC specifically, there are certainly plenty of options for managing large-scale, diverse workflows that are designed specifically for cloud environments, and increasingly, for “big data” workflows that require orchestration between custom and commercial analytics stacks, involving hops from private or public clouds, into Hadoop and over to other analytics engines. The issue is, while there are dedicated tools for addressing workflow demands of HPC environments specifically (GridEngine, Platform, Adaptive, etc.) , or cloud environments in particular (OpenStack, etc.), some, including Adaptive Computing, argue that there are no tools that tackle HPC, cloud and the new range of big data opportunities all together—and in a way that’s primed for the custom workflow models that are so often found in some of the most complex enterprise and research datacenters.

In their experience with large organizations including NOAA, the Department of Defense and others, Adaptive Computing has had the opportunity to look under the hoods of some complicated engines for doing everything from oil exploration to addressing national security concerns. These users—and around 60% of those they recently surveyed across the public and private sector (beyond HPC exclusively) tended to have custom, homegrown workflows, which often leads to a host of problems, including a lack of flexibility to adopt new tools, time consumption spent on manually handling the complexity, and of course, overall inefficiency across the datacenter.

That 60% is a striking figure when one considers that the advent of new tools being considered to address the growing bevy of “big data” problems means more custom scripting and management of an already top-heavy stack. According to Adaptive Computing’s Jill King, this means the addition of more silos, which is exactly the opposite of what’s needed for mission-critical environments. Adaptive’s answer to this complexity is called Big Workflow, which for now means addressing these homegrown environments with a different type of glue than has been used to bind many of the HPC centers they’ve worked with over the last ten years with Moab.

King says that for many datacenter environments across the HPC and big data spectrum, the logjam happens at the important processing stage for complex data. This is currently very manual, time-consuming and laden with dependencies and, according to conversations they’ve had across multiple organizations, they’re finding a lot of “both over and under-utilized silos with long, complicated cues that simply aren’t efficient. “There’s a great need to unify, optimize and guarantee these environments,” King said.

Adaptive Computing senior architect, Daniel Hardman offered detail on Big Workflow, which is both an approach that requires custom tuning for homegrown environments via dedicated work with customer needs—as well as offering some new hooks for big data analytics tooling.

As you can see below, there are several separate silos, all governed at the top by what’s very often either a sophisticated homegrown or off-the-shelf system. Generally, says Hardman, there are not efficient ways of connecting the top level with the many silos below—and further, that top level framework can be connected across many parts of the datacenter and spectrum of needs; for example, that same level might be governing general business operations, a Hadoop cluster, an interface to a cloud pulling data off storage, and an HPC environment on top of all of that. It’s quite possible to do all of this—but it’s hardly efficient or manageable and leads to inflexibility given the processes that need to be worked in manually for custom workflows when new hooks are needed or something changes.

BigWorkflow1

“There a big need for an engine that’s capable of implementing a policy-based engine across these silos,” said Hardman. “We already sell Moab cloud suite, and a comparable product in HPC, and offer an integration with the Intel Hadoop side, and although we’ve not done a lot on public cloud it’s also possible. What’s needed then is something that makes it so a user’s custom glue can tap into some efficiency and automation–a new kind of coordination so that our Big Workflow coordinator can contact these silos and make things happen across those many silo boundaries.”

The goal of Big Workflow (the coordinator is not a product as much as an approach rooted in some new hooks they’ve provided to big data sources via the Intel Hadoop distro and more) is to provide all the logic in hard-coded scripts, which Hardman says can eliminate a lot of the duct tape with management across these silos. They’re still there, but the distinction between them is a lot less painful.

BigWorkflow2

“Most people in IT think about equilibrium—keep things humming-if things get broken, they get fixed. The problem is that big data is not friendly to that; it has an interesting relationship to storage in that it may not be convenient to think about those silo boundaries anymore. For example, I might have the same dataset, which begins its life in a public cloud, then I need to process and massage it in Hadoop, then perform some HPC computation on it after that, but that data may have all sorts of issues (privacy, regulatory, etc) I can’t just move it around or pretend that it’s local when it’s not. It has to be managed with policies that understand data movement, staging, management and more. Big data makes this Big Workflow coordination mandatory.”

For those familiar with Adaptive or using it already, there is the addition of the “data expert” concept, which is the smart part of the engine that has to be able to understand all about the data (lifecycle, forms through that lifecycle and its movement, size, who owns it, where can it be copied or not). This is coupled with some of the new automation for custom workflows found in the coordinator. As King explained, “we’re integrating with these custom workflows for now,  then we’ll branch out and make these standards but with so many people having custom workflows, we need to be able to provide something flexible.” In other words, Adaptive is using lessons learned with customers like Digital Globe (see a detailed writeup of how this works in action over at EnterpriseTech) to propel their work for custom environments and implement those lessons as standards to help broaden their APIs and reach into more areas, including tools like Tivoli, for instance.

This approach should resonate for folks in HPC and enterprise circles, according to IDC. “Our 2013 study revealed that a surprising two thirds of HPC sites are now performing big data analysis as part of their HPC workloads, as well as an uptick in combined uses of cloud computing and supercomputing,” said Chirag Dekate, Ph.D., research manager, High-Performance Systems at IDC. “As there is no shortage of big data to analyze and no sign of it slowing down, combined uses of cloud and HPC will occur with greater frequency, creating market opportunities for solutions such as Adaptive’s Big Workflow.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Portugal Launches Its First Supercomputer

July 12, 2019

Portugal has officially inaugurated its first-ever supercomputer. The unassumingly named “Bob” supercomputer is housed in the Minho Advanced Computer Center (MACC) at the University of Minho.  Bob was announced i Read more…

By Oliver Peckham

What’s New in HPC Research: Traffic Simulation, Performance Variations, Scheduling & More

July 11, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered servers for AI workloads, has expanded the program beyond th Read more…

By Doug Black

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

How AI Powers Up Data Management and Analytics

Companies are making more decisions based on data. However, the ability to intelligently process the growing volume of data is a bottleneck to extracting actionable insights. Read more…

Quantum Start-up Rigetti Acquires QxBranch; Bolsters App Dev Capability

July 11, 2019

Quantum startup Rigetti Computing announced today it acquired QxBranch, a quantum computing and data analytics software startup. The latest move marks what has been a busy year for Rigetti. Roughly one year ago, it annou Read more…

By John Russell

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

Applied Materials Embedding New Memory Technologies in Chips

July 9, 2019

Applied Materials, the $17 billion Santa Clara-based materials engineering company for the semiconductor industry, today announced manufacturing systems enablin Read more…

By Doug Black

ISC19 Cluster Competition: HPCC Deep Dive

July 7, 2019

The biggest benchmark the student warriors tackled during the ISC19 Student Cluster Competition was the colossal HPC Challenge. This is a collection of benchmar Read more…

By Dan Olds

OLCF Bids Farewell to Its Titan Supercomputer

July 4, 2019

After seven years of faithful service, and a long reign as the United States' fastest supercomputer, the Cray XK7-based Titan supercomputer at the Oak Ridge Lea Read more…

By Staff report

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

Intel Partners with Baidu on Neural Network Training Chip

July 2, 2019

A pillar of Intel’s emerging AI product portfolio, its upcoming Nervana Neural Network Processor for training (NNP-T), will be a collaborative development eff Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This