Cracking the Silos of Custom Workflows

By Nicole Hemsoth

February 27, 2014

In high performance computing, the time-honored concept of creating tailored workflows to address complex requirements is nothing new. However, with the advent of new tools to analyze and process data—not to mention store, sort and manage it—traditional ways of thinking about HPC workflows are falling by the wayside in favor of new approaches that might help balance, stabilize and shatter siloed environments.

Moving beyond HPC specifically, there are certainly plenty of options for managing large-scale, diverse workflows that are designed specifically for cloud environments, and increasingly, for “big data” workflows that require orchestration between custom and commercial analytics stacks, involving hops from private or public clouds, into Hadoop and over to other analytics engines. The issue is, while there are dedicated tools for addressing workflow demands of HPC environments specifically (GridEngine, Platform, Adaptive, etc.) , or cloud environments in particular (OpenStack, etc.), some, including Adaptive Computing, argue that there are no tools that tackle HPC, cloud and the new range of big data opportunities all together—and in a way that’s primed for the custom workflow models that are so often found in some of the most complex enterprise and research datacenters.

In their experience with large organizations including NOAA, the Department of Defense and others, Adaptive Computing has had the opportunity to look under the hoods of some complicated engines for doing everything from oil exploration to addressing national security concerns. These users—and around 60% of those they recently surveyed across the public and private sector (beyond HPC exclusively) tended to have custom, homegrown workflows, which often leads to a host of problems, including a lack of flexibility to adopt new tools, time consumption spent on manually handling the complexity, and of course, overall inefficiency across the datacenter.

That 60% is a striking figure when one considers that the advent of new tools being considered to address the growing bevy of “big data” problems means more custom scripting and management of an already top-heavy stack. According to Adaptive Computing’s Jill King, this means the addition of more silos, which is exactly the opposite of what’s needed for mission-critical environments. Adaptive’s answer to this complexity is called Big Workflow, which for now means addressing these homegrown environments with a different type of glue than has been used to bind many of the HPC centers they’ve worked with over the last ten years with Moab.

King says that for many datacenter environments across the HPC and big data spectrum, the logjam happens at the important processing stage for complex data. This is currently very manual, time-consuming and laden with dependencies and, according to conversations they’ve had across multiple organizations, they’re finding a lot of “both over and under-utilized silos with long, complicated cues that simply aren’t efficient. “There’s a great need to unify, optimize and guarantee these environments,” King said.

Adaptive Computing senior architect, Daniel Hardman offered detail on Big Workflow, which is both an approach that requires custom tuning for homegrown environments via dedicated work with customer needs—as well as offering some new hooks for big data analytics tooling.

As you can see below, there are several separate silos, all governed at the top by what’s very often either a sophisticated homegrown or off-the-shelf system. Generally, says Hardman, there are not efficient ways of connecting the top level with the many silos below—and further, that top level framework can be connected across many parts of the datacenter and spectrum of needs; for example, that same level might be governing general business operations, a Hadoop cluster, an interface to a cloud pulling data off storage, and an HPC environment on top of all of that. It’s quite possible to do all of this—but it’s hardly efficient or manageable and leads to inflexibility given the processes that need to be worked in manually for custom workflows when new hooks are needed or something changes.

BigWorkflow1

“There a big need for an engine that’s capable of implementing a policy-based engine across these silos,” said Hardman. “We already sell Moab cloud suite, and a comparable product in HPC, and offer an integration with the Intel Hadoop side, and although we’ve not done a lot on public cloud it’s also possible. What’s needed then is something that makes it so a user’s custom glue can tap into some efficiency and automation–a new kind of coordination so that our Big Workflow coordinator can contact these silos and make things happen across those many silo boundaries.”

The goal of Big Workflow (the coordinator is not a product as much as an approach rooted in some new hooks they’ve provided to big data sources via the Intel Hadoop distro and more) is to provide all the logic in hard-coded scripts, which Hardman says can eliminate a lot of the duct tape with management across these silos. They’re still there, but the distinction between them is a lot less painful.

BigWorkflow2

“Most people in IT think about equilibrium—keep things humming-if things get broken, they get fixed. The problem is that big data is not friendly to that; it has an interesting relationship to storage in that it may not be convenient to think about those silo boundaries anymore. For example, I might have the same dataset, which begins its life in a public cloud, then I need to process and massage it in Hadoop, then perform some HPC computation on it after that, but that data may have all sorts of issues (privacy, regulatory, etc) I can’t just move it around or pretend that it’s local when it’s not. It has to be managed with policies that understand data movement, staging, management and more. Big data makes this Big Workflow coordination mandatory.”

For those familiar with Adaptive or using it already, there is the addition of the “data expert” concept, which is the smart part of the engine that has to be able to understand all about the data (lifecycle, forms through that lifecycle and its movement, size, who owns it, where can it be copied or not). This is coupled with some of the new automation for custom workflows found in the coordinator. As King explained, “we’re integrating with these custom workflows for now,  then we’ll branch out and make these standards but with so many people having custom workflows, we need to be able to provide something flexible.” In other words, Adaptive is using lessons learned with customers like Digital Globe (see a detailed writeup of how this works in action over at EnterpriseTech) to propel their work for custom environments and implement those lessons as standards to help broaden their APIs and reach into more areas, including tools like Tivoli, for instance.

This approach should resonate for folks in HPC and enterprise circles, according to IDC. “Our 2013 study revealed that a surprising two thirds of HPC sites are now performing big data analysis as part of their HPC workloads, as well as an uptick in combined uses of cloud computing and supercomputing,” said Chirag Dekate, Ph.D., research manager, High-Performance Systems at IDC. “As there is no shortage of big data to analyze and no sign of it slowing down, combined uses of cloud and HPC will occur with greater frequency, creating market opportunities for solutions such as Adaptive’s Big Workflow.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This