Shaking the HPC In-Memory Stack

By Nicole Hemsoth

March 3, 2014

Many who have been in HPC for a number of years will remember GridGain, the in-memory computing company that has found success at a number of commercial and academic high performance computing sites since its official launch in 2010—an effort backed with an initial $2.5 million investment, followed by another boost last year with a Series B round of an additional $10 million.

While the company still has firm roots in HPC and is vocal about the advantages of in-memory approaches for scientific applications, it’s using some of its VC funds to look beyond its supercomputing roots with some new hooks inside the platform that has broader enterprise appeal. This is one that takes critical lessons from HPC but ties it together with Java string, a newly-announced open source version for foot-in-the-door movement, and a platform approach to in-memory that teases out high performance computing, streaming data processing, and Hadoop acceleration with claws in several cloud capabilities to boot.

The company’s co-founder, Nikita Ivanov, who has spent a great many of his 20-plus years addressing distributed computing problems, openly admits that one of the reasons they might not have a high number of users in HPC is because of their Java-based approach. However, he argues that this is not a shortcoming on the part of the technology he developed and evolved starting in 2005, it’s a problem with HPC’s inability to get out from under the spell of its love affair with C-based approaches.

Perhaps calling it a “love affair” isn’t fair—it’s more of a relationship borne from legacy roots. As he explains, this is an issue that’s based in the Fortran era. This has spun into multiple libraries, specifically revolving around HPC, that haven’t been able to develop to look more like what he says he’s seeing everywhere else. He says Java is flexible, ridiculously easier to manage, especially when compared to the MPI stacks he dealt with in this past, and more robust. “HPC has decades-old technology that has been refurbished,” says Ivanov, “but even for pure HPC workloads, nothing can touch what we have here based on Java.”

What’s interesting about that statement is that he says in their talks with potential customers across a broad swath—“traditional HPC” and start-up commercial enterprises alike—there is a trending away from workloads that “just HPC” or “just Hadoop.” Rather, systems are juggling a number of different workloads, all of which have been separated with individual software to handle parts of the disparate tasks—and all of which might be able to benefit from in-memory computing.

This is where GridGain’s approach starts to make real sense. Instead of just catering to HPC, as they did in the past, they can offer tools for those workloads that mesh, under the same platform—same piece of overarching software—with their Hadoop accelerator, and/or their streaming real-time data analysis platform. Once you get past the Java roots, Ivanov says, users are capable of trying on different models and approaches in a way that makes sense across the stack. Oftentimes, he says, they’re finding that users don’t have one pure purpose, but seem to be requiring more than one of their in-memory hooks (for instance, streaming and Hadoop).

GridGainStack1

“We’re putting ourselves in the full in-memory platform space since HPC is only a limited view of what we do. We’re not just focused on compute-intensive applications. For data-intensive applications, we’re also focused on in-memory data grids, Hadoop accelerators, and in-memory streaming. Thus if you have small amounts of data but compute-intensive applications, as seen with Monte Carlo applications in financial services, this is a fit—but it’s also a fit when dealing with a data warehouse using our in-memory data grid approach.” Ivanov says they’re not carving out HPC, rather, they’re expanding the definition to be more in line with the wider range of what they do.

GridGain’s primary growth vertical is financial services, which the company says is a perfect fit in terms of their need for real-time in-memory approaches to handle risk. According to the company’s CEO, Abe Kleinfeld, their work with one of the top banks in Russia, Sperbank, demonstrates how their high performance computing roots have fed into some wider appeal. The Russian financial institution, which marks GridGain’s largest use case, is using the company to handle its real-time risk analysis across its global trade portfolio. When the first did a test of GridGain’s capabilities, Kleinfeld says they were able to manage over a billion transactions per second across 10 standard Dell blades sporting 96 GB of memory per blade. In other words, as he noted, “they were able to get a billion transactions per second for under $25,000 of hardware.”

Kleinfeld says they will likely reach a $3.5 million target this year, powered by taking their platform approach open source, presumably into more shops and deeper into some potential OEM and other partnerships. “The time is ripe for in-memory computing because the economics of it have never been better—it makes almost no sense to do disk-based computing. Besides,” he said, “the world is looking to build on open standards, why would anyone want to be locked into a box or buy several different products that do different things when they get an open platform for a range of in-memory computing?”

gridgainopen

As one might imagine, the open source version isn’t a community service. While all of the legs of GridGain’s in-memory platform are available for a try-on, the real robust features for putting this into mission-critical production are behind a wall.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This