The In-Memory Key to Real-Time Analysis

By Dr. William Bain

March 6, 2014

Real-time analytics offers enterprises the ability to examine “live,” fast-changing data within operational systems and obtain feedback in milliseconds to seconds. For example, a hedge fund in a financial services organization can track the effect of market fluctuations on its portfolios (“strategies”) of long and short equity positions in various market areas (high tech, real estate, etc.) and immediately identify strategies requiring rebalancing. An e-commerce company can reconcile orders and inventory in real time to avoid a shortfall in inventory and ensure that orders are accurately filled.

Use Data-Parallel Computing to Avoid Data Motion

The key to real-time performance, especially for growing workloads, is to use memory-based, data-parallel computing. Building on fundamentally the same parallel computing architecture as supercomputers used in scientific applications, in-memory data grids (IMDGs) run on a clustered set of servers to hold and analyze memory-based data. IMDGs keep access times constant, which is exactly the characteristic needed by applications which have to handle growing workloads. More significantly, some IMDGs can host data-parallel applications to update and analyze data stored on the grid’s servers. This is the key to their ability to perform real-time analytics.

The performance benefits of the data-parallel approach are dramatic. To illustrate this, take a look at some performance measurements for a risk analysis computation in financial services modeled using a technique called “back testing.” This analysis compares a variety of stock trading algorithms using recorded price histories for a collection of equities. Each price history was stored in a single object within the IMDG, and the servers were assigned equities to analyze. (Note that the IMDG’s in-memory storage also could dynamically update the price histories from a ticker feed to enable real-time feedback to a trading system.)

The following chart compares the conventional “task-parallel” technique in which the servers analyze a random set of equities to the data-parallel technique in which the servers only examine equities stored on the same server.  Note how the data-parallel approach (red line) maintains linear performance scaling as the workload increases and IMDG servers are added to the cluster. In contrast, the task-parallel approach (blue line) fails to achieve performance scaling due to accessing objects from remote servers which creates substantial networking overhead.

By avoiding data motion, the data-parallel approach delivers much higher performance. All data is analyzed in place without the need to send it over to network to another server for analysis. IMDGs which perform data-parallel analysis can take full advantage of this linear speedup to deliver results with the lowest possible latency. This enables them to run real-time analytics on fast-changing data held in the IMDG, and they combine the IMDG’s in-memory storage with scalable computation to implement complex applications.

An Example in Financial Services

Consider the example of a hedge fund tracking its trading strategies for the market sectors it tracks. The data for these strategies can be stored within an IMDG as a collection of objects, each of which represents a market sector, such as high tech or real estate, and holds the equity positions and rules for that market sector. Because the IMDG automatically distributes the objects within a collection across all grid servers, it ensures that data-parallel analysis will be load-balanced across the cluster.

The IMDG continuously runs a data-parallel computation that both updates each strategy object with a snapshot of market price changes from an incoming market feed and evaluates the strategy to determine if stock trades are needed. By performing this analysis in parallel across all strategies, the IMDG generates results in milliseconds instead of several minutes needed by conventional disk-based, sequential analysis. No data motion is needed to perform the data-parallel analysis, and maximum performance is achieved.

The following diagram illustrates how the IMDG hosts a set of strategies and performs this analysis while updating them with a live market feed containing snapshots of price changes. The analysis produces a stream of alerts to the trader (or to an automated trading system) for strategies that need rebalancing. The diagram shows the data parallel analysis being performed by a technique called parallel method invocation (PMI), which executes the analysis code in parallel on all objects and then globally combines the results for delivery to the trader:

The net effect is that the hedge fund now can update its strategies and obtain alerts in real time to rebalance its portfolios based on current market conditions. A proof of concept implementation using 2K strategies and tracking a total of 40K positions on a cluster of four servers delivered alerts within about 330 milliseconds. This was measured to be more than 40X faster than running this analysis on the Apache Hadoop platform and shows the power of IMDGs to perform real-time analytics.

Summing Up

In-memory data grids offer a powerful yet easy to use platform for hosting fast-changing, in-memory data and running highly scalable, data-parallel computations. This allows IMDGs to be seamlessly integrated into operational systems and perform real-time analytics on “live” data, opening up many new opportunities to add value to these systems.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visitors to the Colorado Convention Center in Denver for the larg Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some cases, city managers didn’t even know existed. Speaking Read more…

By Doug Black

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

SC17 Student Cluster Competition Configurations: Fewer Nodes, Way More Accelerators

November 16, 2017

The final configurations for each of the SC17 “Donnybrook in Denver” Student Cluster Competition have been released. Fortunately, each team received their equipment shipments on time and undamaged, so the teams are r Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

OpenACC Shines in Global Climate/Weather Codes

November 14, 2017

OpenACC, the directive-based parallel programming model used mostly for porting codes to GPUs for use on heterogeneous systems, came to SC17 touting impressive Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This