Benchmarking MPI Communication on Phi-Based Clusters

By Tiffany Trader

March 12, 2014

Intel’s Many Integrated Core (MIC) architecture was designed to accommodate highly-parallel applications, a great many of which rely on the Message Passing Interface (MPI) standard. Applications deployed on Intel Xeon Phi coprocessors may use offload programming, an approach similar to the CUDA framework for general purpose GPU (GPGPU) computing, in which the CPU-based application is equipped with directives that send the compute-intensive parts of the code and related data from the host system memory to the coprocessor. Unlike GPGPUs, though, Xeon Phi coprocessors can operate as independent IP-addressable manycore nodes allowing MPI processes to be run on them without involving the host CPUs. The so-called symmetric clustering model is attractive because it allows for relatively easy porting of CPU-based applications to clusters with manycore computing accelerators. The end-user can speedup HPC applications without having to restructure the code to implement data offload.

Colfax Phi MPI Fig9In the symmetric heterogeneous clustering setup, MPI processes are launched directly on coprocessors. Peer-to-peer communication between coprocessors occurs over network fabric virtualized in the operating system. MPI applications written for CPUs may be executed thusly without major code modification, however the convenience comes at the expense of reduced communication efficiency, at least in the absence of specialized networking hardware.

Colfax International researchers Vadim Karpusenko and Andrey Vladimirov address this shortcoming by implementing a Phi-based cluster with InfiniBand interconnects and the appropriate software. They describe the process and the results of their research in a recently published paper, “Configuration and Benchmarks of Peer-to-Peer MPI Communications Over Gigabit Ethernet and InfiniBand in a Cluster with Intel Xeon Phi Coprocessors.”

The authors compare MPI communication performance between coprocessors with the TCP protocol over the Ethernet fabric to the DAPL protocol over the InfiniBand fabric. They measure and discuss the latencies and bandwidths of MPI messages with and without advanced configuration with InfiniBand support. The tuning process for running an MPI application on the InfiniBand-based Phi cluster is also discussed, as is the impact of the InfiniBand protocol on an Asian option pricing application. The researchers also provide a set of recommendations for accommodating non-uniform communication bandwidth across the PCIe bus in high performance computing applications.

The trials were performed on a cluster consisting of two Colfax ProEdge SXP8600p workstations, each with four Intel Xeon Phi 31S1P coprocessors and one of the following networking setups:

1. Intel Gigabit Ethernet adapters installed in the systems and connected to a D-Link Gigabit Ethernet switch.
2. Mellanox InfiniBand ConnectX-3 Single-Port VPI 4X QDR adapters connected to a 36-port Mellanox Infiniscale IV switch.

The systems were outfitted with CentOS 6.5 Linux operating system with kernel 2.6.32-431.e16.x86_64, MPSS 3.1.2, Intel MPI 4.1.1.036, and OFED 1.5.4.1. The researchers relied on the Intel MPI Benchmark (IMB) that shipped with Intel MPI for performance measurements. The Message Passing Interface (MPI), a parallel programming model for distributed or shared memory platforms, can use different network configurations and fabrics for communication, but at this time the Intel MPI Library is the only implementation of MPI with support for Intel Xeon Phi coprocessors in a cluster.

It’s important to note that Xeon Phi coprocessors are Peripheral Component Interconnect Express (PCIe) end-point devices; they do not have Ethernet or InfiniBand ports that plug directly into the network. Instead, the Linux OS on coprocessors and the Manycore Platform Software Stack (MPSS) on hosts work together to virtualize networking on the coprocessor. The research paper details the nature of the peer-to-peer messaging between coprocessors and proposes several possible network configurations.

Several pages are devoted to Ethernet and InfiniBand messaging with the authors explaining how to set up and configure networking in a symmetric heterogenous cluster with MIC architecture and how to execute MPI applications on the configured cluster.

As the researchers suspected, their testing showed that the TCP protocol (Ethernet) was satisfactory for applications utilizing the offload model, but for heterogeneous MPI applications launched directly on coprocessors, peer-to-peer communication over Ethernet is orders of magnitude slower than the actual hardware limits.

The duo further demonstrate that installing InfiniBand controllers and related software on top of the MPSS provides a major improvement of MPI communication between hosts and coprocessors in a cluster, including intra-node communication between CPUs and coprocessors, intra-node communication between coprocessors, and inter-node communication between both types of devices.

The researchers observe that “despite degraded bandwidth in some cases, all communication paths involving Intel Xeon Phi coprocessors with InfiniBand are faster than with Gigabit Ethernet by one or two orders of magnitude.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

“Lunch & Learn” to Explore the Growing Applications of Genomic Analytics

In the digital age of medicine, healthcare providers are rapidly transforming their approach to patient care. Traditional technologies are no longer sufficient to process vast quantities of medical data (including patient histories, treatment plans, diagnostic reports, and more), challenging organizations to invest in a new style of IT to enable faster and higher-quality care. Read more…

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan and will begin operation in fiscal 2018 (starts in April). A Read more…

By John Russell

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This