Benchmarking MPI Communication on Phi-Based Clusters

By Tiffany Trader

March 12, 2014

Intel’s Many Integrated Core (MIC) architecture was designed to accommodate highly-parallel applications, a great many of which rely on the Message Passing Interface (MPI) standard. Applications deployed on Intel Xeon Phi coprocessors may use offload programming, an approach similar to the CUDA framework for general purpose GPU (GPGPU) computing, in which the CPU-based application is equipped with directives that send the compute-intensive parts of the code and related data from the host system memory to the coprocessor. Unlike GPGPUs, though, Xeon Phi coprocessors can operate as independent IP-addressable manycore nodes allowing MPI processes to be run on them without involving the host CPUs. The so-called symmetric clustering model is attractive because it allows for relatively easy porting of CPU-based applications to clusters with manycore computing accelerators. The end-user can speedup HPC applications without having to restructure the code to implement data offload.

Colfax Phi MPI Fig9In the symmetric heterogeneous clustering setup, MPI processes are launched directly on coprocessors. Peer-to-peer communication between coprocessors occurs over network fabric virtualized in the operating system. MPI applications written for CPUs may be executed thusly without major code modification, however the convenience comes at the expense of reduced communication efficiency, at least in the absence of specialized networking hardware.

Colfax International researchers Vadim Karpusenko and Andrey Vladimirov address this shortcoming by implementing a Phi-based cluster with InfiniBand interconnects and the appropriate software. They describe the process and the results of their research in a recently published paper, “Configuration and Benchmarks of Peer-to-Peer MPI Communications Over Gigabit Ethernet and InfiniBand in a Cluster with Intel Xeon Phi Coprocessors.”

The authors compare MPI communication performance between coprocessors with the TCP protocol over the Ethernet fabric to the DAPL protocol over the InfiniBand fabric. They measure and discuss the latencies and bandwidths of MPI messages with and without advanced configuration with InfiniBand support. The tuning process for running an MPI application on the InfiniBand-based Phi cluster is also discussed, as is the impact of the InfiniBand protocol on an Asian option pricing application. The researchers also provide a set of recommendations for accommodating non-uniform communication bandwidth across the PCIe bus in high performance computing applications.

The trials were performed on a cluster consisting of two Colfax ProEdge SXP8600p workstations, each with four Intel Xeon Phi 31S1P coprocessors and one of the following networking setups:

1. Intel Gigabit Ethernet adapters installed in the systems and connected to a D-Link Gigabit Ethernet switch.
2. Mellanox InfiniBand ConnectX-3 Single-Port VPI 4X QDR adapters connected to a 36-port Mellanox Infiniscale IV switch.

The systems were outfitted with CentOS 6.5 Linux operating system with kernel 2.6.32-431.e16.x86_64, MPSS 3.1.2, Intel MPI 4.1.1.036, and OFED 1.5.4.1. The researchers relied on the Intel MPI Benchmark (IMB) that shipped with Intel MPI for performance measurements. The Message Passing Interface (MPI), a parallel programming model for distributed or shared memory platforms, can use different network configurations and fabrics for communication, but at this time the Intel MPI Library is the only implementation of MPI with support for Intel Xeon Phi coprocessors in a cluster.

It’s important to note that Xeon Phi coprocessors are Peripheral Component Interconnect Express (PCIe) end-point devices; they do not have Ethernet or InfiniBand ports that plug directly into the network. Instead, the Linux OS on coprocessors and the Manycore Platform Software Stack (MPSS) on hosts work together to virtualize networking on the coprocessor. The research paper details the nature of the peer-to-peer messaging between coprocessors and proposes several possible network configurations.

Several pages are devoted to Ethernet and InfiniBand messaging with the authors explaining how to set up and configure networking in a symmetric heterogenous cluster with MIC architecture and how to execute MPI applications on the configured cluster.

As the researchers suspected, their testing showed that the TCP protocol (Ethernet) was satisfactory for applications utilizing the offload model, but for heterogeneous MPI applications launched directly on coprocessors, peer-to-peer communication over Ethernet is orders of magnitude slower than the actual hardware limits.

The duo further demonstrate that installing InfiniBand controllers and related software on top of the MPSS provides a major improvement of MPI communication between hosts and coprocessors in a cluster, including intra-node communication between CPUs and coprocessors, intra-node communication between coprocessors, and inter-node communication between both types of devices.

The researchers observe that “despite degraded bandwidth in some cases, all communication paths involving Intel Xeon Phi coprocessors with InfiniBand are faster than with Gigabit Ethernet by one or two orders of magnitude.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement on at least one thing: the power consumption and latency pen Read more…

By Doug Black

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This