Details Emerging on Japan’s Future Exascale System

By Nicole Hemsoth

March 18, 2014

The Big Data and Extreme Computing meeting in Fukuoka, Japan concluded recently, pushing a great deal of information about international progress toward exascale initiatives into the global community.

As the host country, Japan had ample opportunity to gather many of the researchers building out the next incarnation of the K Computer, which is expected to be the country’s first exascale system—a $1.38 billion undertaking that’s already underway with expected installation in 2019 and full-steam production in 2020.

According to the roadmap put forth by Yoshio Kawaguchi from Japan’s Office for Promotion of Computing Science/MEXT, basic development for the future system is swiftly moving on software, accelerator, processor and scientific project planning fronts. Fujitsu, Hitachi and NEC are key vendors providing the system and support, along with technical staff at the University of Tokyo, the University of Tsukuba, the Tokyo Institute of Technology, Tohoku University and of course, at RIKEN, site of the K Computer and future hub of its successor.

Called “postK” in reference to its ability to step up the power of the original former top system, K, the timeline for the exascale system is laid out as a projection–with additional research notes (summarized below) to highlight various tracks of the early development and system/stack design.

Japan_Exascale_RoadmapJapan has its sights set on a number of potential problems that might be solved on postK, including the development of safer cars, the evolution of drugs with mitigated or reduced side effects, better prediction and responses to natural disasters, and specific projects, like the development of better batteries, the creation of electronic devices using novel materials, and the enhanced ability to kick galaxy simulation up several (thousand) notches.

JapanExascaleChart

ExascaleChart2

Of course, to do all of this at a reasonable cost is going to take some serious innovation. A few of the key researchers behind the components to building postK shared details, including Dr. Mitsushisa Sato from the Center for Computational Sciences at the University of Tsukba and team leader for the Programming Environment Research Team behind the K Computer at RIKEN.

His work is centered around optimal accelerators for massive heterogeneous systems, which has led to the creation of what the team calls an “extreme SIMD architecture” designed for compute oriented applications. This involves tightly coupled accelerators and a few unique memory refinements, including the addition of high bandwidth memory (HBM in the chart below).

This architecture would be designed to tackle molecular dynamics and N-body-type simulations as well as stencil apps and according to Sato, will aim for high performance in the area of around 10 teraflops per chip using a 10nm silicon technology that will arrive somewhere in the 2018-2020 timeframe. While that’s not staggering when you really think about it, the real story seems to be (at this point anyway) that most of the crunch is being handled by the on-board accelerator with the added weight of the memory on the same package and associated networking.

Accelerator_Arch

Sato and team are exploring possible programming models for this approach via a C extension for the in-the-weeds aspects, an OpenACC-based model for stencil applications to help ease porting existing codes, a DSL and application framework for building with as well as the option of OpenCL. There is no mention of CUDA here, which should likely tell you something about the nature of the accelerator. Again, as with all aspects of this article, we’ll be following up as soon as we can secure more information.

ArchitecturesOn the processor front, this is again seen as a natural evolution of the K system. According to Yutaka Ishikawa from the University of Tokyo, the team will carry over lessons learned with the general processor environment to target far greater efficiency and to meet a software stack that’s designed for both the proposed and commodity-based systems. The ridiculously bright yellow chart on the left shows the various processor approaches they’ve been testing during their current cycles.

In a presentation from the application and system feasibility study teams, they noted the many parallels in terms of challenges and potential problems the system could solve between K and the exascale system of 2020. The K Computer, which was put into production in 2011, currently has over 1,431 users and is running around 136 projects. Each of the sites in Japan’s national infrastructure is dedicated to a specific strategic application area (although not exclusively running projects in the domain). At RIKEN the K system is devoted in particular to life sciences and drug design problems. Other sites are focused on materials science, climate and geosciences, manufacturing and astrophysics. The system has supported two notable Gordon Bell prizes since its inception, in addition to topping the Top 500 list in 2011.

Keep in mind that the United States is a partner on the software side of the project. As Kawaguchi’s slide highlights, the partnership will continue into the next phases of system development. The team notes that “international collaboration for system software has been considered”

Exascale_Partnership_Japan

We’ll be bringing much more insight into this story as soon as we’re able to secure it but we did want to point to the details as soon as possible. You can view more about these and other presentations around exascale (not to mention a lot of talk about big data) at the main site, where the presentations have just gone live: http://www.exascale.org/bdec/agenda/fukuoka-japan

Our thanks to Dr. Jack Dongarra to the early insight he was able to provide. Follow-up coming soon, stay tuned…

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Do Cryptocurrencies Have a Part to Play in HPC?

February 22, 2018

It’s easy to be distracted by news from the US, China, and now the EU on the state of various exascale projects, but behind the vinyl-wrapped cabinets and well-groomed sales execs are an army of Excel-wielding PMO and Read more…

By Chris Downing

HOKUSAI’s BigWaterfall Cluster Extends RIKEN’s Supercomputing Performance

February 21, 2018

RIKEN, Japan’s largest comprehensive research institution, recently expanded the capacity and capabilities of its HOKUSAI supercomputer, a key resource managed by the institution’s Advanced Center for Computing and C Read more…

By Ken Strandberg

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

HPE Extreme Performance Solutions

Experience Memory & Storage Solutions that will Transform Your Data Performance

High performance computing (HPC) has revolutionized the way we harness insight, leading to a dramatic increase in both the size and complexity of HPC systems. Read more…

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HPE to provide the DoD High Performance Computing Modernizatio Read more…

By Tiffany Trader

HOKUSAI’s BigWaterfall Cluster Extends RIKEN’s Supercomputing Performance

February 21, 2018

RIKEN, Japan’s largest comprehensive research institution, recently expanded the capacity and capabilities of its HOKUSAI supercomputer, a key resource manage Read more…

By Ken Strandberg

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This