Peek into China’s Plans for Top Supercomputer Shows No Slowdown

By Nicole Hemsoth

March 20, 2014

This week we learned more about Japan’s exascale plans for the 2020 timeframe, but also on the contender list to be among the first to reach exascale-class computing levels is China. For now, however, the country has its sights set on continuing to dominate the list in 2015 and beyond.

To put this and the larger exascale computing momentum in context, the United States and Europe are both expecting to reach this level of computing in the early 2020s. However, without serious investment and innovation, Asia has a strong foothold, starting now with its #1 Tianhe-2 system, which dramatically bested other machines last year–and will continue to push the boundaries against its rivals in Japan.

While this change the exascale tide on the international front will not come as a surprise to many, a glimpse into the future of the current far-and-away top supercomputer on the planet, the Tianhe-2, shows an ambitious upgrade cycle arriving in 2015 to bring it from 54.9 petaflops (which set quite a record when it was announced) to 100 petaflops.

While this is a remarkable feat in floating point boundary-pushing, so far it doesn’t look like there will be any new earth-shattering tech to power the tectonic compute force. However, as we’ll say repeatedly at this early point, details are still rather spotty.

Tianhe-2 is entering its second stage, as expected, with this upgrade although just how much of a kicker it would get was unknown when the development plans were described over the last year.  The name is not expected to change and from what we’re able to see from the light, early details, it wouldn’t be fitting since this looks to be a refresh and upgrade versus any rip and replace of the Xeon Phi/Xeon and FT-1500 approach.

It’s been a while since we’ve taken a look at this system, so for reference the details are below to help compare some of the changes China is set to make on the road to its 100 petaflopper. The # sign next to the processors tells us how many are currently on the system.

Tianhe2_Current

At the intimate BDEC event in Japan recently, a peek into future plans for Tianhe-2, Dr. Yutong Lu from the National University of Defense Technology in China (site of the top system) offered some details about what’s expected. While there aren’t a lot of details, the system will very possibly use the next generation Knight’s Landing (this was not confirmed by Intel or NUDT but since it’s already a Phi system and the next generation is going to offer over double the flops, this seems a natural guess since they’re not likely to rip and replace to add a new, custom architecture). If you want to do some mental math with no confirmed details (where’s the fun in it otherwise) you can guess that the newest Knight’s Landing will provide an approximately 3x boost. Swap out those 48,000 Phi cards and what do you have? A tick over 100 petaflops. Meanwhile, at Intel, someone is beating their fists, saying, “but we haven’t released those details yet!”. Fair enough, fellas. Speculation ends here.

Looking at the chart above, it’s not likely that little FT-1500 processor (Galaxy) can be expanded to play any major role in such a doubling of floating point capability since it’s just used as a front end processor. Further, the only other processor option that might be a fringe answer to this improvement is the Shenwei (as found on the #40 BlueLight machine) but it’s unlikely the 16-core processor, even after an expected upgrade cycle this year as it enters its fourth generation) will come close to offering that kind of boost.

The real story behind the Tianhe-2 kick is probably going to be around the custom TH-express interconnect, which Lu said would be getting a name upgrade (now called the TH-express+2). Whether that means it’s doubly fast or not remains to be seen. Again, we’ll report on details as soon as we have them.

Lu says China is also hard at work on the first legs of its exascale research program with the goal being to create an “advanced and feasible architecture” that falls into the target of 30GFlops per Watt.

China_supercomputer_traj

Current funding for China’s exascale and continued HPC investments are centered on developing the fundamental algorithms and manycore parallel programming techniques required for extreme scale scientific computing. They’re also pouring additional funds into pushing boundaries in terms of their network-based research environment.

In addition to firming up their CNGrid service environment and continuing to operate the petascale Xeon/GPU Nebulae supercomputer at the National Supercomputing Center in Shenzen, Guangdong, China, the country is still hard at work on the Shenwei processors as a key item on the funding agenda.

The next generation of applications are set to focus on fusion, aircraft design, space, materials science, drug design, animation, the “mechanics of giant engineering equipment” and electromagnetic environment simulation.

The country is also focusing on big data as a key goal area, with emphasis on a large-scale in-memory computing system that sports “hybrid memory management policies.” The target application areas will focus on providing “humanoid answers” to difficult problems as well as tackling Watson-like cognitive computing challenges.

These are still early days in terms of confirmation from either vendors or centers but as always, we’ll deliver details as soon as we’re able to validate them.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitive computing, memory-centric computing, high-speed communicat Read more…

By John Russell

US Seeks to Automate Video Analysis

January 16, 2018

U.S. military and intelligence agencies continue to look for new ways to use artificial intelligence to sift through huge amounts of video imagery in hopes of freeing analysts to identify threats and otherwise put their Read more…

By George Leopold

URISC@SC17 and the #LongestLastMile

January 11, 2018

A multinational delegation recently attended the Understanding Risk in Shared CyberEcosystems workshop, or URISC@SC17, in Denver, Colorado. URISC participants and presenters from 11 countries, including eight African nations, 12 U.S. states, Canada, India and Nepal, also attended SC17, the annual international conference for high performance computing, networking, storage and analysis that drew nearly 13,000 attendees. Read more…

By Elizabeth Leake, STEM-Trek Nonprofit

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitiv Read more…

By John Russell

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

The @hpcnotes Predictions for HPC in 2018

January 4, 2018

I’m not averse to making predictions about the world of High Performance Computing (and Supercomputing, Cloud, etc.) in person at conferences, meetings, causa Read more…

By Andrew Jones

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This