NVIDIA Steers Roadmap Around GPU Bottlenecks

By Nicole Hemsoth

March 25, 2014

The GPU Technology Conference (GTC ’14) kicked off this morning in San Jose with NVIDIA CEO, Jen-Hsun Huang, opting to open the event with a preview of what’s ahead for GPUs in big data–and big computing. While the gaming and entertainment eye candy  one expects at GTC did indeed find its way into the mix, high performance computing, machine learning, computer vision and large-scale analytics talk set the tone for the year, leaving no room for doubt that the GPU maker is serious about its business for performance and efficiency-conscious mainstream enterprise and research users.

NVIDIA’s roadmap for GPU computing revolves around resolving some of the core bottlenecks that have always existed for accelerators in terms of data movement and memory capability. In this era of “big data,” the performance levels drop off with the addition of ever-larger data streams, even with innovations that have tried to get around this by letting the GPU crunch while data movement goes on in the background as with recent efforts around direct memory access (DMA).

NVIDIA’s answer to the data movement bottleneck is found in today’s announcement of NVLink, which is its newly announced chip-to-chip communication approach that lets the GPU talk on a dedicated line with other GPUs, as well as hook directly to the CPU along unified memory lines without the weight of PCIe—which even at its best in the current 3.0 state can’t compare to what they’ve cooked. In effect, this bundle of PCIe pipes with DMA acts much like an extension of high bandwidth (and proprietary, one should add) PCIe. It splits the efficiency and performance drain of pure PCIe into components instead of running both through the same pipes. The end result, said Huang during his keynote, is a 5-12x performance improvement over PCIe 3.0 and a 4x efficiency boost.

NVIDIA was reluctant to share a great deal in the way of detail, but in essence, NVLink is comprised of bi-directional 8-lane “bricks” which can be put together to get the bandwidth boost promised. The speed on each of the lanes is around 20 Gb/s for each brick. However, it appears that this will be the second generation of the interconnect instead with the first iteration sporting a four-lane highway, which will be found first in Pascal, which we’ll get to in a moment.

NVLink1

In the event that a user is hooked in with a CPU that doesn’t support NVLink, the same fast lane can be opened between GPUs as below.

NVLink2

This is the sort of development one might expect out of a research group led by interconnect wizard, Bill Dally. And it might seem that there would have to be a “catch” of some sort. Other than having to start from the ground in terms of building and investing in new motherboards and an ecosystem, it’s hard to see what some of the challenges might be at this point beyond which OEMs will go out of their way to meet the terms of the yet-unannounced licensing plan. While it may involve a new set of motherboards to contend with, the good news is the module, which is very small, can be snapped in to allow for the construction of very dense servers. Additionally, the programming model shouldn’t be its own bottleneck as NVLink looks very mich like PCIe, but with its own special DMA capabilities to allow software to adapt to it easily. NVIDIA notes that the first generation will not be memory coherent, users will have to hold out for the second iteration of NVLink, by which time there might be a chance for an ecosystem to develop around it.

All of this work starts to hum together around the 2016 timeframe with the addition of Pascal, which was announced today to fill in the gaps between now and Volta. Pascal, named after the famous mathematician, will provide unified memory and 3D memory in addition to sporting what will likely be the first generation of NVLink. As you can see, the current status of Maxwell is right on time, however NVIDIA declined questions about when that would be extended to meet the needs of the Tesla group.

NVPascal

One of the key features of Pascal is the addition of stacked memory, which NVIDIA says will well over triple (almost quadruple) the bandwidth, from 288 to 1000 around a TB/sec. Additionally, this fix to the off-package GDDR5 is set to offer around 4x the energy efficiency by making the voltage regulators and compute close neighbors.

“GPUs have 288 GB/s of bandwidth already, which is many times that of the CPU—the very reason why GPUs contribute so much to parallel computation,” said Huang. “Of course we would love to have many times more. But the challenge is, the GPU already has a lot of pins; it’s already the biggest chip in the world. The interface is already very wide. How do you solve this when going wider would make the package enormous and making the signaling go faster would push down energy efficiency and we know we’re power limited in almost every application we’re pursing?”

Click here to view photos from the NVIDIA GPU Technology Conference 2014
Click here to view photos from the NVIDIA GPU Technology Conference 2014
Huang answered his own questions by introducing Pascal, which is the size of an iPhone (around 1/3 the size of a PCIe card), which will sport the 3D memory and first-generation of NVLink. What’s rather interesting about the outlook for Pascal is that Huang didn’t talk about it in terms of form factors. He referred to it simply as a “module”, meaning that while servers are a natural home, NVIDIA wants to shop around for other places to place it.

During the keynote the emphasis was on various modes of mobility and access—from cloud-delivered services, self-driving cars with modular units in the trunk, hints at ultrasound and other medical devices being suitable hosts and more. In short, as we wait for NVIDIA to roll out Volta, Maxwell and eventually Pascal, could be making the rounds outside of the box.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even in the U.S. (which has a reasonably fast average broadband Read more…

By Oliver Peckham

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

It is with great sadness that we announce the death of Rich Brueckner. His passing is an unexpected and enormous blow to both his family and our HPC family. Rich was born in Milwaukee, Wisconsin on April 12, 1962. His Read more…

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the dominant primate species, with the neanderthals disappearing b Read more…

By Oliver Peckham

Discovering Alternative Solar Panel Materials with Supercomputing

May 23, 2020

Solar power is quickly growing in the world’s energy mix, but silicon – a crucial material in the construction of photovoltaic solar panels – remains expensive, hindering solar’s expansion and competitiveness wit Read more…

By Oliver Peckham

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia said revenues for the period ended April 26 were up 39 perc Read more…

By Doug Black

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

TACC Supercomputers Delve into COVID-19’s Spike Protein

May 22, 2020

If you’ve been following COVID-19 research, by now, you’ve probably heard of the spike protein (or S-protein). The spike protein – which gives COVID-19 its namesake crown-like shape – is the virus’ crowbar into Read more…

By Oliver Peckham

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to re Read more…

By John Russell

AMD Epyc Rome Picked for New Nvidia DGX, but HGX Preserves Intel Option

May 19, 2020

AMD continues to make inroads into the datacenter with its second-generation Epyc "Rome" processor, which last week scored a win with Nvidia's announcement that Read more…

By Tiffany Trader

Hacking Streak Forces European Supercomputers Offline in Midst of COVID-19 Research Effort

May 18, 2020

This week, a number of European supercomputers discovered intrusive malware hosted on their systems. Now, in the midst of a massive supercomputing research effo Read more…

By Oliver Peckham

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Wafer-Scale Engine AI Supercomputer Is Fighting COVID-19

May 13, 2020

Seemingly every supercomputer in the world is allied in the fight against the coronavirus pandemic – but not many of them are fresh out of the box. Cerebras S Read more…

By Oliver Peckham

Startup MemVerge on Memory-centric Mission

May 12, 2020

Memory situated at the center of the computing universe, replacing processing, has long been envisioned as instrumental to radically improved datacenter systems Read more…

By Doug Black

In Australia, HPC Illuminates the Early Universe

May 11, 2020

Many billions of years ago, the universe was a swirling pool of gas. Unraveling the story of how we got from there to here isn’t an easy task, with many simul Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This