NVIDIA Steers Roadmap Around GPU Bottlenecks

By Nicole Hemsoth

March 25, 2014

The GPU Technology Conference (GTC ’14) kicked off this morning in San Jose with NVIDIA CEO, Jen-Hsun Huang, opting to open the event with a preview of what’s ahead for GPUs in big data–and big computing. While the gaming and entertainment eye candy  one expects at GTC did indeed find its way into the mix, high performance computing, machine learning, computer vision and large-scale analytics talk set the tone for the year, leaving no room for doubt that the GPU maker is serious about its business for performance and efficiency-conscious mainstream enterprise and research users.

NVIDIA’s roadmap for GPU computing revolves around resolving some of the core bottlenecks that have always existed for accelerators in terms of data movement and memory capability. In this era of “big data,” the performance levels drop off with the addition of ever-larger data streams, even with innovations that have tried to get around this by letting the GPU crunch while data movement goes on in the background as with recent efforts around direct memory access (DMA).

NVIDIA’s answer to the data movement bottleneck is found in today’s announcement of NVLink, which is its newly announced chip-to-chip communication approach that lets the GPU talk on a dedicated line with other GPUs, as well as hook directly to the CPU along unified memory lines without the weight of PCIe—which even at its best in the current 3.0 state can’t compare to what they’ve cooked. In effect, this bundle of PCIe pipes with DMA acts much like an extension of high bandwidth (and proprietary, one should add) PCIe. It splits the efficiency and performance drain of pure PCIe into components instead of running both through the same pipes. The end result, said Huang during his keynote, is a 5-12x performance improvement over PCIe 3.0 and a 4x efficiency boost.

NVIDIA was reluctant to share a great deal in the way of detail, but in essence, NVLink is comprised of bi-directional 8-lane “bricks” which can be put together to get the bandwidth boost promised. The speed on each of the lanes is around 20 Gb/s for each brick. However, it appears that this will be the second generation of the interconnect instead with the first iteration sporting a four-lane highway, which will be found first in Pascal, which we’ll get to in a moment.

NVLink1

In the event that a user is hooked in with a CPU that doesn’t support NVLink, the same fast lane can be opened between GPUs as below.

NVLink2

This is the sort of development one might expect out of a research group led by interconnect wizard, Bill Dally. And it might seem that there would have to be a “catch” of some sort. Other than having to start from the ground in terms of building and investing in new motherboards and an ecosystem, it’s hard to see what some of the challenges might be at this point beyond which OEMs will go out of their way to meet the terms of the yet-unannounced licensing plan. While it may involve a new set of motherboards to contend with, the good news is the module, which is very small, can be snapped in to allow for the construction of very dense servers. Additionally, the programming model shouldn’t be its own bottleneck as NVLink looks very mich like PCIe, but with its own special DMA capabilities to allow software to adapt to it easily. NVIDIA notes that the first generation will not be memory coherent, users will have to hold out for the second iteration of NVLink, by which time there might be a chance for an ecosystem to develop around it.

All of this work starts to hum together around the 2016 timeframe with the addition of Pascal, which was announced today to fill in the gaps between now and Volta. Pascal, named after the famous mathematician, will provide unified memory and 3D memory in addition to sporting what will likely be the first generation of NVLink. As you can see, the current status of Maxwell is right on time, however NVIDIA declined questions about when that would be extended to meet the needs of the Tesla group.

NVPascal

One of the key features of Pascal is the addition of stacked memory, which NVIDIA says will well over triple (almost quadruple) the bandwidth, from 288 to 1000 around a TB/sec. Additionally, this fix to the off-package GDDR5 is set to offer around 4x the energy efficiency by making the voltage regulators and compute close neighbors.

“GPUs have 288 GB/s of bandwidth already, which is many times that of the CPU—the very reason why GPUs contribute so much to parallel computation,” said Huang. “Of course we would love to have many times more. But the challenge is, the GPU already has a lot of pins; it’s already the biggest chip in the world. The interface is already very wide. How do you solve this when going wider would make the package enormous and making the signaling go faster would push down energy efficiency and we know we’re power limited in almost every application we’re pursing?”

Click here to view photos from the NVIDIA GPU Technology Conference 2014
Click here to view photos from the NVIDIA GPU Technology Conference 2014
Huang answered his own questions by introducing Pascal, which is the size of an iPhone (around 1/3 the size of a PCIe card), which will sport the 3D memory and first-generation of NVLink. What’s rather interesting about the outlook for Pascal is that Huang didn’t talk about it in terms of form factors. He referred to it simply as a “module”, meaning that while servers are a natural home, NVIDIA wants to shop around for other places to place it.

During the keynote the emphasis was on various modes of mobility and access—from cloud-delivered services, self-driving cars with modular units in the trunk, hints at ultrasound and other medical devices being suitable hosts and more. In short, as we wait for NVIDIA to roll out Volta, Maxwell and eventually Pascal, could be making the rounds outside of the box.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Dell EMC will Build OzStar – Swinburne’s New Supercomputer to Study Gravity

August 16, 2017

Dell EMC announced yesterday it is building a new supercomputer – the OzStar – for the Swinburne University of Technology (Australia) in support the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system into space aboard the SpaceX Dragon Spacecraft to explore if Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based system on the STREAM benchmark and on a test case running ANS Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capa Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This