NVIDIA Steers Roadmap Around GPU Bottlenecks

By Nicole Hemsoth

March 25, 2014

The GPU Technology Conference (GTC ’14) kicked off this morning in San Jose with NVIDIA CEO, Jen-Hsun Huang, opting to open the event with a preview of what’s ahead for GPUs in big data–and big computing. While the gaming and entertainment eye candy  one expects at GTC did indeed find its way into the mix, high performance computing, machine learning, computer vision and large-scale analytics talk set the tone for the year, leaving no room for doubt that the GPU maker is serious about its business for performance and efficiency-conscious mainstream enterprise and research users.

NVIDIA’s roadmap for GPU computing revolves around resolving some of the core bottlenecks that have always existed for accelerators in terms of data movement and memory capability. In this era of “big data,” the performance levels drop off with the addition of ever-larger data streams, even with innovations that have tried to get around this by letting the GPU crunch while data movement goes on in the background as with recent efforts around direct memory access (DMA).

NVIDIA’s answer to the data movement bottleneck is found in today’s announcement of NVLink, which is its newly announced chip-to-chip communication approach that lets the GPU talk on a dedicated line with other GPUs, as well as hook directly to the CPU along unified memory lines without the weight of PCIe—which even at its best in the current 3.0 state can’t compare to what they’ve cooked. In effect, this bundle of PCIe pipes with DMA acts much like an extension of high bandwidth (and proprietary, one should add) PCIe. It splits the efficiency and performance drain of pure PCIe into components instead of running both through the same pipes. The end result, said Huang during his keynote, is a 5-12x performance improvement over PCIe 3.0 and a 4x efficiency boost.

NVIDIA was reluctant to share a great deal in the way of detail, but in essence, NVLink is comprised of bi-directional 8-lane “bricks” which can be put together to get the bandwidth boost promised. The speed on each of the lanes is around 20 Gb/s for each brick. However, it appears that this will be the second generation of the interconnect instead with the first iteration sporting a four-lane highway, which will be found first in Pascal, which we’ll get to in a moment.

NVLink1

In the event that a user is hooked in with a CPU that doesn’t support NVLink, the same fast lane can be opened between GPUs as below.

NVLink2

This is the sort of development one might expect out of a research group led by interconnect wizard, Bill Dally. And it might seem that there would have to be a “catch” of some sort. Other than having to start from the ground in terms of building and investing in new motherboards and an ecosystem, it’s hard to see what some of the challenges might be at this point beyond which OEMs will go out of their way to meet the terms of the yet-unannounced licensing plan. While it may involve a new set of motherboards to contend with, the good news is the module, which is very small, can be snapped in to allow for the construction of very dense servers. Additionally, the programming model shouldn’t be its own bottleneck as NVLink looks very mich like PCIe, but with its own special DMA capabilities to allow software to adapt to it easily. NVIDIA notes that the first generation will not be memory coherent, users will have to hold out for the second iteration of NVLink, by which time there might be a chance for an ecosystem to develop around it.

All of this work starts to hum together around the 2016 timeframe with the addition of Pascal, which was announced today to fill in the gaps between now and Volta. Pascal, named after the famous mathematician, will provide unified memory and 3D memory in addition to sporting what will likely be the first generation of NVLink. As you can see, the current status of Maxwell is right on time, however NVIDIA declined questions about when that would be extended to meet the needs of the Tesla group.

NVPascal

One of the key features of Pascal is the addition of stacked memory, which NVIDIA says will well over triple (almost quadruple) the bandwidth, from 288 to 1000 around a TB/sec. Additionally, this fix to the off-package GDDR5 is set to offer around 4x the energy efficiency by making the voltage regulators and compute close neighbors.

“GPUs have 288 GB/s of bandwidth already, which is many times that of the CPU—the very reason why GPUs contribute so much to parallel computation,” said Huang. “Of course we would love to have many times more. But the challenge is, the GPU already has a lot of pins; it’s already the biggest chip in the world. The interface is already very wide. How do you solve this when going wider would make the package enormous and making the signaling go faster would push down energy efficiency and we know we’re power limited in almost every application we’re pursing?”

Click here to view photos from the NVIDIA GPU Technology Conference 2014
Click here to view photos from the NVIDIA GPU Technology Conference 2014
Huang answered his own questions by introducing Pascal, which is the size of an iPhone (around 1/3 the size of a PCIe card), which will sport the 3D memory and first-generation of NVLink. What’s rather interesting about the outlook for Pascal is that Huang didn’t talk about it in terms of form factors. He referred to it simply as a “module”, meaning that while servers are a natural home, NVIDIA wants to shop around for other places to place it.

During the keynote the emphasis was on various modes of mobility and access—from cloud-delivered services, self-driving cars with modular units in the trunk, hints at ultrasound and other medical devices being suitable hosts and more. In short, as we wait for NVIDIA to roll out Volta, Maxwell and eventually Pascal, could be making the rounds outside of the box.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's latest weapon in the AI battle with GPU maker Nvidia and clou Read more…

ISC 2024 Student Cluster Competition

May 16, 2024

The 2024 ISC 2024 competition welcomed 19 virtual (remote) and eight in-person teams. The in-person teams participated in the conference venue and, while the virtual teams competed using the Bridges-2 supercomputers at t Read more…

Grace Hopper Gets Busy with Science 

May 16, 2024

Nvidia’s new Grace Hopper Superchip (GH200) processor has landed in nine new worldwide systems. The GH200 is a recently announced chip from Nvidia that eliminates the PCI bus from the CPU/GPU communications pathway.  Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of the last panels at ISC 2024 — the discussion was fascinat Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can uncover patterns, generate insights, and make predictions that Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top500 list of the fastest supercomputers in the world. At s Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance c Read more…

Shutterstock 493860193

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Softw Read more…

ISC 2024: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Leading Solution Providers

Contributors

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire