NVIDIA Highlights GPU Progress on Titan Supercomputer

By Nicole Hemsoth

March 27, 2014

The GPU Technology Conference this week in San Jose offered plenty of material for the supercomputing set with a number of presentations focused on specific programming challenges for large-scale scientific and enterprise HPC applications. The Titan system at Oak Ridge National Lab tied together key themes through a number of the talks, which helped put massive-scale use of GPUs in better context.

Jim Rogers, Director of Operations at the National Center for Computational Sciences at Oak Ridge National Laboratory described in detail how the 27-petaflop Titan system has been making use of its 18,688 NVIDIA Tesla K20 GPUs. Oak Ridge is able to track efficiency metrics through recent changes in the Kepler device driver and Cray’s software that allows for sophisticated reporting of GPU usage metrics for both memory use and scheduled work. Rogers used the data from these metrics to point to the some specific operational benefits to using GPUs over a multicore-only approach, estimating that their use of GPUs at such scale has offered over 5x the efficiency of CPU-only system.

titan_detailsThe efficiency and performance message seems to be resonating with an increasing number of users requesting allocations on Titan, says Fernanda Foertter, HPC User Support Specialist at Oak Ridge National Lab. In her GTC presentation about GPU interest and user needs on Titan, she highlighted the demand for GPU acceleration for a growing number of applications. Foertter was able to collect several perspectives from users of Titan about their experiences porting applications and making use of the accelerators and pointed to the role of acceleration for the future of exascale-class systems. Her presentation set the stage for a number of topics around GPU usage on Titan, particularly in terms of the coding support required for complex scientific and commercial codes.

Aside from details about general production and operation of the system, there were a number of users of the Titan system present to share experiences about porting and altering their codes as well as gauging performance against CPU-only systems. Among such users was Evghenii Gaburov, HPC Advisor at SURFsara, who described how his team was able to leverage Titan to simulate the evolution of the Milky Way on a star-by-star basis in just over a week. While he made no secret of the challenges in parallelizing an advanced hierarchical GPU tree-code for use on Titan, after some significant workarounds, they were able to redesign the communication strategy to maximize both the CPU and GPU use and allow their application to scale to over 8000 of Titan’s GPUs.

Others shared war stories about getting their codes primed to run on Titan and other GPU-powered supercomputers, including James Phillips, a senior research programmer at the University of Illinois. His team had already worked with the NAMD molecular dynamics code on Blue Waters and before they began to tap into Titan. Again, while there were significant software challenges, once the team overcame some of the core barriers of their legacy application using core CUDA 5.5 and Kepler features, they were able to improve their time to result—one that allows researchers to model the complete atomic structure of the HIV capsid.

Weather modeling efforts on Titan were a prime use case that opened the doors for researchers to talk about the use of GPUs at large scale to continue improving model resolution. Dag Lohmann, co-founder at catastrophe modeling company, Katrisk, described how his company, which was recently selected by Oak Ridge National Lab to use Titan for specific flooding events, was enthusiastic about the performance boost offered by GPUs. In addition to providing a great overview of catastrophe modeling in the context of global flood risk models, he detailed the challenges of getting their CUDA-based fluid mechanics code to run on the Keplers (in terms of code, data assimilation, data volume, etc). The end result of their work allows KatRisk to create probabilistic flood models and maps at high resolution.

tesla_cardAlso on the weather and climate front, Mark Govett, Chief of the Advanced Computing division at NOAA discussed the development, parallelization and performance of the NIM next-gen weather model for the Titan system, which will allow the weather agency to improve weather prediction accuracy. Specifically, Govett talked about NOAA’s experiences using OpenACC compilers—an important element since NOAA’s parallelization path has relied on a homegrown directive-based Fortran-to-CUDA  compiler to get the application ready to run at the full resolution across 5000 Titan nodes.

Others shared specific thoughts on code-related issues at Titan scale. For instance, Alan Gray, a research architect at EPCC at the University of Edinburgh described their work with a highly complex application that allowed his team to scale their soft matter physics code to over 8,000 GPUs on Titan. Specifically, he talked about the challenges and ultimate success of blending CUDA and MPI and shared details about their communication library, which can be adopted by others. Interestingly, with their code that supports bboth GPU and CPU-only versions, they were able to demonstrate a performance enhancement of 3.5-5x using the GPU variant against the same code running on fully utilized CPUs.

More researchers, including Mathias Wagner, from Bielfeld University and Indiana University, shared how GPUs are advancing quantum chromodynamics following his team’s preparation of complex code for Titan via the QUDA library. In a similar vein, Justin Foley, a developer at Microway and NVIDIA, described QUDA in more detail for the same research area, which rounded out the picture for Lattice Quantm Chromodynamics on Titan GPUs.

Researchers from GE Global were on hand as well to talk about scaling their codes to meet the GPU capabilities on Titan for gas turbine modeling and accelerating three-body molecular dynamics codes and others shared details about scaling to Titan heights for seismic and medical research applications.

On the code front, OpenACC was a hot topic among the HPC set. Rob Farber did an excellent job of highlighting some of the key trends in programming and optimizing for GPUs at large scale. He presented on new results that extend machine learning and big data analysis to 13 petaflops average sustained performance across 16,384 GPUs on Titan—a very popular topic.

As we noted earlier in the week, this GTC event didn’t seem to emphasize the gaming and entertainment crowd. The focus on large-scale analytics, cognitive computing, computer vision and of course, scientific computing were top of the charts in terms of sessions and posters. Jack Wells from Oak Ridge, who chaired the “Extreme Scale Supercomputing with the Titan Supercomputer” series for GTC was able to gather a representative sample of leading researchers to put real-world use and challenge context into the Titan story.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel Ships Drives Based on 3D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3D XPoint non-volatile memory technology as it targets data-driven workloads. Intel’s new Optane solid-state drives, designated P4800X, seek to combine the attributes of memory and storage in the same device. Read more…

By George Leopold

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This