NVIDIA Highlights GPU Progress on Titan Supercomputer

By Nicole Hemsoth

March 27, 2014

The GPU Technology Conference this week in San Jose offered plenty of material for the supercomputing set with a number of presentations focused on specific programming challenges for large-scale scientific and enterprise HPC applications. The Titan system at Oak Ridge National Lab tied together key themes through a number of the talks, which helped put massive-scale use of GPUs in better context.

Jim Rogers, Director of Operations at the National Center for Computational Sciences at Oak Ridge National Laboratory described in detail how the 27-petaflop Titan system has been making use of its 18,688 NVIDIA Tesla K20 GPUs. Oak Ridge is able to track efficiency metrics through recent changes in the Kepler device driver and Cray’s software that allows for sophisticated reporting of GPU usage metrics for both memory use and scheduled work. Rogers used the data from these metrics to point to the some specific operational benefits to using GPUs over a multicore-only approach, estimating that their use of GPUs at such scale has offered over 5x the efficiency of CPU-only system.

titan_detailsThe efficiency and performance message seems to be resonating with an increasing number of users requesting allocations on Titan, says Fernanda Foertter, HPC User Support Specialist at Oak Ridge National Lab. In her GTC presentation about GPU interest and user needs on Titan, she highlighted the demand for GPU acceleration for a growing number of applications. Foertter was able to collect several perspectives from users of Titan about their experiences porting applications and making use of the accelerators and pointed to the role of acceleration for the future of exascale-class systems. Her presentation set the stage for a number of topics around GPU usage on Titan, particularly in terms of the coding support required for complex scientific and commercial codes.

Aside from details about general production and operation of the system, there were a number of users of the Titan system present to share experiences about porting and altering their codes as well as gauging performance against CPU-only systems. Among such users was Evghenii Gaburov, HPC Advisor at SURFsara, who described how his team was able to leverage Titan to simulate the evolution of the Milky Way on a star-by-star basis in just over a week. While he made no secret of the challenges in parallelizing an advanced hierarchical GPU tree-code for use on Titan, after some significant workarounds, they were able to redesign the communication strategy to maximize both the CPU and GPU use and allow their application to scale to over 8000 of Titan’s GPUs.

Others shared war stories about getting their codes primed to run on Titan and other GPU-powered supercomputers, including James Phillips, a senior research programmer at the University of Illinois. His team had already worked with the NAMD molecular dynamics code on Blue Waters and before they began to tap into Titan. Again, while there were significant software challenges, once the team overcame some of the core barriers of their legacy application using core CUDA 5.5 and Kepler features, they were able to improve their time to result—one that allows researchers to model the complete atomic structure of the HIV capsid.

Weather modeling efforts on Titan were a prime use case that opened the doors for researchers to talk about the use of GPUs at large scale to continue improving model resolution. Dag Lohmann, co-founder at catastrophe modeling company, Katrisk, described how his company, which was recently selected by Oak Ridge National Lab to use Titan for specific flooding events, was enthusiastic about the performance boost offered by GPUs. In addition to providing a great overview of catastrophe modeling in the context of global flood risk models, he detailed the challenges of getting their CUDA-based fluid mechanics code to run on the Keplers (in terms of code, data assimilation, data volume, etc). The end result of their work allows KatRisk to create probabilistic flood models and maps at high resolution.

tesla_cardAlso on the weather and climate front, Mark Govett, Chief of the Advanced Computing division at NOAA discussed the development, parallelization and performance of the NIM next-gen weather model for the Titan system, which will allow the weather agency to improve weather prediction accuracy. Specifically, Govett talked about NOAA’s experiences using OpenACC compilers—an important element since NOAA’s parallelization path has relied on a homegrown directive-based Fortran-to-CUDA  compiler to get the application ready to run at the full resolution across 5000 Titan nodes.

Others shared specific thoughts on code-related issues at Titan scale. For instance, Alan Gray, a research architect at EPCC at the University of Edinburgh described their work with a highly complex application that allowed his team to scale their soft matter physics code to over 8,000 GPUs on Titan. Specifically, he talked about the challenges and ultimate success of blending CUDA and MPI and shared details about their communication library, which can be adopted by others. Interestingly, with their code that supports bboth GPU and CPU-only versions, they were able to demonstrate a performance enhancement of 3.5-5x using the GPU variant against the same code running on fully utilized CPUs.

More researchers, including Mathias Wagner, from Bielfeld University and Indiana University, shared how GPUs are advancing quantum chromodynamics following his team’s preparation of complex code for Titan via the QUDA library. In a similar vein, Justin Foley, a developer at Microway and NVIDIA, described QUDA in more detail for the same research area, which rounded out the picture for Lattice Quantm Chromodynamics on Titan GPUs.

Researchers from GE Global were on hand as well to talk about scaling their codes to meet the GPU capabilities on Titan for gas turbine modeling and accelerating three-body molecular dynamics codes and others shared details about scaling to Titan heights for seismic and medical research applications.

On the code front, OpenACC was a hot topic among the HPC set. Rob Farber did an excellent job of highlighting some of the key trends in programming and optimizing for GPUs at large scale. He presented on new results that extend machine learning and big data analysis to 13 petaflops average sustained performance across 16,384 GPUs on Titan—a very popular topic.

As we noted earlier in the week, this GTC event didn’t seem to emphasize the gaming and entertainment crowd. The focus on large-scale analytics, cognitive computing, computer vision and of course, scientific computing were top of the charts in terms of sessions and posters. Jack Wells from Oak Ridge, who chaired the “Extreme Scale Supercomputing with the Titan Supercomputer” series for GTC was able to gather a representative sample of leading researchers to put real-world use and challenge context into the Titan story.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This