NVIDIA Highlights GPU Progress on Titan Supercomputer

By Nicole Hemsoth

March 27, 2014

The GPU Technology Conference this week in San Jose offered plenty of material for the supercomputing set with a number of presentations focused on specific programming challenges for large-scale scientific and enterprise HPC applications. The Titan system at Oak Ridge National Lab tied together key themes through a number of the talks, which helped put massive-scale use of GPUs in better context.

Jim Rogers, Director of Operations at the National Center for Computational Sciences at Oak Ridge National Laboratory described in detail how the 27-petaflop Titan system has been making use of its 18,688 NVIDIA Tesla K20 GPUs. Oak Ridge is able to track efficiency metrics through recent changes in the Kepler device driver and Cray’s software that allows for sophisticated reporting of GPU usage metrics for both memory use and scheduled work. Rogers used the data from these metrics to point to the some specific operational benefits to using GPUs over a multicore-only approach, estimating that their use of GPUs at such scale has offered over 5x the efficiency of CPU-only system.

titan_detailsThe efficiency and performance message seems to be resonating with an increasing number of users requesting allocations on Titan, says Fernanda Foertter, HPC User Support Specialist at Oak Ridge National Lab. In her GTC presentation about GPU interest and user needs on Titan, she highlighted the demand for GPU acceleration for a growing number of applications. Foertter was able to collect several perspectives from users of Titan about their experiences porting applications and making use of the accelerators and pointed to the role of acceleration for the future of exascale-class systems. Her presentation set the stage for a number of topics around GPU usage on Titan, particularly in terms of the coding support required for complex scientific and commercial codes.

Aside from details about general production and operation of the system, there were a number of users of the Titan system present to share experiences about porting and altering their codes as well as gauging performance against CPU-only systems. Among such users was Evghenii Gaburov, HPC Advisor at SURFsara, who described how his team was able to leverage Titan to simulate the evolution of the Milky Way on a star-by-star basis in just over a week. While he made no secret of the challenges in parallelizing an advanced hierarchical GPU tree-code for use on Titan, after some significant workarounds, they were able to redesign the communication strategy to maximize both the CPU and GPU use and allow their application to scale to over 8000 of Titan’s GPUs.

Others shared war stories about getting their codes primed to run on Titan and other GPU-powered supercomputers, including James Phillips, a senior research programmer at the University of Illinois. His team had already worked with the NAMD molecular dynamics code on Blue Waters and before they began to tap into Titan. Again, while there were significant software challenges, once the team overcame some of the core barriers of their legacy application using core CUDA 5.5 and Kepler features, they were able to improve their time to result—one that allows researchers to model the complete atomic structure of the HIV capsid.

Weather modeling efforts on Titan were a prime use case that opened the doors for researchers to talk about the use of GPUs at large scale to continue improving model resolution. Dag Lohmann, co-founder at catastrophe modeling company, Katrisk, described how his company, which was recently selected by Oak Ridge National Lab to use Titan for specific flooding events, was enthusiastic about the performance boost offered by GPUs. In addition to providing a great overview of catastrophe modeling in the context of global flood risk models, he detailed the challenges of getting their CUDA-based fluid mechanics code to run on the Keplers (in terms of code, data assimilation, data volume, etc). The end result of their work allows KatRisk to create probabilistic flood models and maps at high resolution.

tesla_cardAlso on the weather and climate front, Mark Govett, Chief of the Advanced Computing division at NOAA discussed the development, parallelization and performance of the NIM next-gen weather model for the Titan system, which will allow the weather agency to improve weather prediction accuracy. Specifically, Govett talked about NOAA’s experiences using OpenACC compilers—an important element since NOAA’s parallelization path has relied on a homegrown directive-based Fortran-to-CUDA  compiler to get the application ready to run at the full resolution across 5000 Titan nodes.

Others shared specific thoughts on code-related issues at Titan scale. For instance, Alan Gray, a research architect at EPCC at the University of Edinburgh described their work with a highly complex application that allowed his team to scale their soft matter physics code to over 8,000 GPUs on Titan. Specifically, he talked about the challenges and ultimate success of blending CUDA and MPI and shared details about their communication library, which can be adopted by others. Interestingly, with their code that supports bboth GPU and CPU-only versions, they were able to demonstrate a performance enhancement of 3.5-5x using the GPU variant against the same code running on fully utilized CPUs.

More researchers, including Mathias Wagner, from Bielfeld University and Indiana University, shared how GPUs are advancing quantum chromodynamics following his team’s preparation of complex code for Titan via the QUDA library. In a similar vein, Justin Foley, a developer at Microway and NVIDIA, described QUDA in more detail for the same research area, which rounded out the picture for Lattice Quantm Chromodynamics on Titan GPUs.

Researchers from GE Global were on hand as well to talk about scaling their codes to meet the GPU capabilities on Titan for gas turbine modeling and accelerating three-body molecular dynamics codes and others shared details about scaling to Titan heights for seismic and medical research applications.

On the code front, OpenACC was a hot topic among the HPC set. Rob Farber did an excellent job of highlighting some of the key trends in programming and optimizing for GPUs at large scale. He presented on new results that extend machine learning and big data analysis to 13 petaflops average sustained performance across 16,384 GPUs on Titan—a very popular topic.

As we noted earlier in the week, this GTC event didn’t seem to emphasize the gaming and entertainment crowd. The focus on large-scale analytics, cognitive computing, computer vision and of course, scientific computing were top of the charts in terms of sessions and posters. Jack Wells from Oak Ridge, who chaired the “Extreme Scale Supercomputing with the Titan Supercomputer” series for GTC was able to gather a representative sample of leading researchers to put real-world use and challenge context into the Titan story.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

URISC@SC17 and the #LongestLastMile

January 11, 2018

A multinational delegation recently attended the Understanding Risk in Shared CyberEcosystems workshop, or URISC@SC17, in Denver, Colorado. URISC participants and presenters from 11 countries, including eight African nations, 12 U.S. states, Canada, India and Nepal, also attended SC17, the annual international conference for high performance computing, networking, storage and analysis that drew nearly 13,000 attendees. Read more…

By Elizabeth Leake, STEM-Trek Nonprofit

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

Intel, Micron to Go Their Separate 3D NAND Ways

January 10, 2018

The announcement on Monday (Jan. 8) that Intel and Micron have decided to “update” – that is, end – their long-term joint development partnership for 3D NAND technology is nearly as interesting an exercise in pub Read more…

By Doug Black

HPE Extreme Performance Solutions

The Living Heart Project Wins Three Prestigious Awards for HPC Simulation

Imagine creating a treatment plan for a patient on the other side of the world, or testing a drug without ever putting subjects at risk. Read more…

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect application performance by 10-30 percent. The patch makes any call fro Read more…

By Rosemary Francis

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

The @hpcnotes Predictions for HPC in 2018

January 4, 2018

I’m not averse to making predictions about the world of High Performance Computing (and Supercomputing, Cloud, etc.) in person at conferences, meetings, causa Read more…

By Andrew Jones

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Independent Hyperion Research Will Chart its Own Course

December 19, 2017

Hyperion Research, formerly the HPC research and consulting practice within IDC, has become an independent company with Earl Joseph, the long-time leader of the Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This