Big Data Reaches to the Stratosphere

By Tiffany Trader

April 3, 2014

Among the many compelling papers to come out of the Big Data and Extreme-scale Computing (BDEC) workshop, held in Fukuoka, Japan, in February, was a position paper from Dr. Volker Markl, full professor and chair of the Database Systems and Information Management (DIMA) group at the Technische Universität Berlin (TU Berlin) detailing the benefits of the Stratosphere data analytics platform.

Dr. Markl writes about how the last decade has ushered in a profound digital transformation that affects nearly every aspect of our lives. Like most technological advances, the opportunities come with a myriad of challenges, and many of these revolve around big data.

Markl traces this avalanche of digital data in part to declining storage costs, the proliferation of cloud computing, and the huge increase in networked devices. He writes that while “at first glance this appears to be favorable for our increasingly networked society…in many ways it is a burden.”

“Data is neither information, nor knowledge,” he continues. “Instead, data is of great value once it has been refined and analyzed, in order to address well-formulated questions, concerning problems of interest. It is only then that economic and social benefits can be fully realized.”

To be useful the data needs to be massaged into something actionable. This process draws on techniques from a number of fields, including graph and network analysis, machine learning, mathematics, statistics, signal processing, text processing, and others. A talented data scientist must be a “jack-of-all-trades,” with a multitude of complex skills. However, well-trained and experienced individuals such as these are in short supply, notes Markl, and accessing this talent is expensive, which limits the value that can be generated from big data.

Previously, before the era of big data was upon us, HPC-savvy programmers mainly had to have MPI experience. Markl maintains that for the most part scalability issues were handled by higher-level programming languages, compilers, and database systems.

“In contrast,” writes Markl, “today’s existing technologies have reached their limits due to big data requirements, which involve data volume, data rate and heterogeneity, and the complexity of the analysis algorithms, which go beyond relational algebra, employing complex user-defined functions, iterations, and distributed state.”

The remedy for this, according to Markl is to implement declarative language concepts, which are inherent in database systems, for big data systems. The challenges associated with this include:
1. Designing a programming language specification that does not require systems programming skills.
2. Mapping programs expressed in this programming language to a computing platform of their own choosing.
3. Executing these in a scalable manner.

Markl is confident that declarative languages will be the way out of the current “stone age” in big data analytics in which there are “algorithm specifications in systems that do not automatically optimize (e.g., MPI, MapReduce, and Hadoop), imperative languages (e.g., C), object-oriented languages (e.g., Java), and relational-oriented languages (e.g., SQL, XQuery, Pig, Hive, and JAQL) with non-tunable external driver programs, and technical computing systems (e.g., R and MATLAB) that do not scale.”

He maintains that the next generation big data analytics infrastructure called Stratosphere and other next generation big data analytics systems, such as Spark and GraphLab, provide a path to deeper data analysis.

Stratosphere combines the strengths of MapReduce/Hadoop with programming abstractions in Java and Scala and a high performance runtime to enable massively parallel in-situ data analytics. The framework has native support for iterations, incremental iterations, and programs consisting of large DAGs of operations.

Stratosphere can process information extraction and integration operations together with deep analytics in a single system, subsuming many specialized systems for graph processing or machine learning in a single environment, writes Markl. Open sourced under the Apache 2.0 license, Stratosphere runs standalone, natively in compute clusters, or in any Hadoop clusters via YARN.

According to Markl, Stratosphere is currently the only system for big data analytics that contains a query optimizer for advanced data analysis programs that go beyond the relational algebra. The aim is to enable data scientists to focus on the primary task without having to spend a lot of time getting the program to scale.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be carefully woven together by people to create the computational c Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit and Sierra. The new AC922 server pairs two Power9 CPUs with f Read more…

By Tiffany Trader

PEZY President Arrested, Charged with Fraud

December 6, 2017

The head of Japanese supercomputing firm PEZY Computing was arrested Tuesday on suspicion of defrauding a government institution of 431 million yen (~$3.8 million). According to reports in the Japanese press, PEZY founde Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Azure Debuts AMD EPYC Instances for Storage Optimized Workloads

December 5, 2017

AMD’s return to the data center received a boost today when Microsoft Azure announced introduction of instances based on AMD’s EPYC microprocessors. The new instances – Lv2-Series of Virtual Machine – use the EPY Read more…

By John Russell

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

SC17 Cluster Competition: Who Won and Why? Results Analyzed and Over-Analyzed

November 28, 2017

Everyone by now knows that Nanyang Technological University of Singapore (NTU) took home the highest LINPACK Award and the Overall Championship from the recently concluded SC17 Student Cluster Competition. We also already know how the teams did in the Highest LINPACK and Highest HPCG competitions, with Nanyang grabbing bragging rights for both benchmarks. Read more…

By Dan Olds

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

SC Bids Farewell to Denver, Heads to Dallas for 30th Anniversary

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Share This