Inside Major League Baseball’s “Hypothesis Machine”

By Nicole Hemsoth

April 3, 2014

When it comes to sports statistics, there’s no richer source of historical data than baseball. With over 140 years of detailed information on individual players, teams, and winning trends, the addition of digital data is powering even deeper analytical capability to help fans and team owners make decisions.

Baseball data, over 95% of which has been created over the last five years, will continue to mount—leading MLB decision-makers to invest in more powerful analytics tools. While there are plenty of business intelligence and database options, teams are now looking to supercomputing—or at least, the spawn of HPC—to help them gain the competitive edge.

Last June, we talked with Cray CEO, Peter Ungaro, who dropped a hint that MLB was their big Urika graph analytical appliance user, but waited on the sidelines for more details, including who the team might be. While the team is still a secret (understandably—this could be the skeleton key to a winning season) we were able to get some details about YarcData’s role in MLB from Cray’s Tim White, who manages the government and intelligence business unit and has been the point man for the mystery team’s walk down graph analytics lane.

White, who left General Dynamics’ Advanced Information Systems division after 8 years to come to Cray, is no stranger to advanced analytics. At General Dynamics, he ran national security, law enforcement and intelligence projects on site, where he was able to understand firsthand the challenges and benefits of real-time information gathering. He said when Cray called him to push into markets with some of the toughest graph analytics problems, he immediately saw the opportunity. Government use of complex graphs to mine for relationships between disparate datasets is expected—but the same value there in understanding how multiple variables translate into unseen ties applies to baseball (and other areas, including fraud detection, drug discovery and more) just as well.

He explained that what teams, just like governments and drug development researchers, are looking for is a “hypothesis machine” that will allow them to integrate multiple, deep data wells and pose several questions against the same data. They are looking for platforms that allow users to look at facets of a given dataset, adding new cuts to see how certain conditions affect the reflection of a hypothesized reality. While he says there are multiple tools for doing this on both the hardware and software front, there is a particular marriage of both elements that works particularly well for graphs. This combination includes a large shared memory machine that lets users cut around unpartitionable problems. At the software core are SPARQL and RDF, which he agrees are specific tools but are the only ones that can tackle large-scale complex graph problems that are otherwise difficult to untangle without the blend they’ve packaged into a Urika box.

urikaTo put the complexity of the graphs MLB is working with in context, White told us that they’re operating in the 10-20 billion edge graph range. That’s no problem for Urika, however, says White, at least compared to trying to manage that kind of large-scale problem using basic joins. For background, the appliance is graph-specific and tailored to RDF, which can be an unwieldy data structure unless it’s humming on a big shared memory system. Urika uses the thread-hungry Cray native XMT processor and while it has that capability, it’s not designed for running floating point vector calculations. The value here is dipping into deep memory to hunt for similarities and associations that expose buried relationships between factors.

“Urika is unique in that it’s a global shared memory machine that lets you look at data in an unpartitioned fashion. This is very critical if you’re looking at graphs, which by nature are unpredictable. Further, certain graphs are non-partitionable—and if you do partition it, it changes the result of a query,” White explained. “There is no MapReduce job or partitioning that will do anything but fracture the graph to a point where it’s no longer reconstructable—and even for those you can reconstruct, it would take a lot of compute power.” Where this works is with memory-bound problems versus those that are compute-bound, in other words.

Urika is also fitting for the big data of MLB given the disparate data sets required to piece together a best-case-scenario for team leaders. There are lots of sources and combining that data requires a data structure that allows for federated queries. This is exactly the reason big pharma and a few others find RDF machines useful (in the case using SPARQL queries). “You could go ahead an do the equivalent of a hundred-way join from a relational database—the question is, how big of a dataset can you do that against?” asked White. “Unless you have something like Urika, which has the ability to do it memory and with massive multi-threading, you’re not able to look at enough data.” He said that when compared to what they’re doing inside Urika, for normal relational databases, this would be the equivalent of a 30-50 way join. Pulling from the large shared memory pool using SPARQL queries offers a more seamless blending of conditions to hypothesize against. And herein lies the selling point for operational budget-constrained MLB.

Although we’re not privy to pricing, the Urika appliance runs in the order of well over a million bucks. However, to put this into some context, consider the ROI. The average win in baseball brings a smaller team a couple of million, a large MLB team between $5 and $7 million. That’s one win. Let’s say Cray’s graph appliance is able to help team owners piece together what happens if you take the average player for  a particular position versus the player they’re analyzing across the course of a season. While those many factors involved are multifaceted, when it comes down to one small decision at the bottom of the ninth with loaded bases, that one switch in decision-making could mean the loss or gain of millions in a winning situation.

So this all begs the question, why buy an expensive near real-time analytical HPC platform if the time itself isn’t necessarily an issue? Couldn’t there be cheaper ways to run this on a SAS or SAP HANA box after the fact? Or for that matter, a shared memory cluster of one’s own devising primed to run the latest, greatest analytics software?

White responded by pointing to the nature of their approach to graph analytics, agreeing that real time here doesn’t have anything to do with immediate in-game decisions. Rather, their queries can be submitted, run very quickly for fast analysis, then analysts can run that same query again in a hurry with different variables. This effectively allows them to tweak the question with new conditions. This “hypothesis machine” approach is what makes the difference, says White, pointing to the burdened systems MLB and other organizations have that can’t be used to tailor one query after the next in rapid succession to find answers and hidden connection between factors they didn’t even know to ask.

The variables for each iterative query range from the outlandish to the expected (RBI, homerun histories, Golden Glove data) and even to the subjective (sentiment of fans, coach and player confidence, salaries, TV revenue, etc.). All of these are collectively referred to as “field effects” which is a certain science in itself.

White agrees that there are many excellent analytical software and hardware platforms out there to choose from, but most of those tend to focus on data that is known. Such platforms consider data from a range of databases that are all finding answers, but don’t go far enough into the masked relationships that baseball (and for that matter government intelligence, pharma and others) require to make real progress.

“We’re past the point of thinking software can solve all the problems,” said White. The hardware matters—in fact, it’s the reason why big organizations with large-scale data-driven challenges are looking seriously at HPC platforms. They’ve managed to eek all the performance out of their code, custom or otherwise, and now see the need for a marriage between the metal and the mind—in MLB, big government and beyond.

“These users want to ask a lot of questions. They want to get those results right away, then change the question. So they go through 20 or 30 different facets of the same question to find what’s interesting. It’s the iterative quality of Urika that’s interesting, it becomes their hypothesis machine—they go through all the hypothetical queries to find the difference maker,” says White.

So we’ve worked out the why on the graph analytics investment side, but with so much of this still subjective science, how on earth did Cray manage to talk an MLB team (these are historically cash-strapped organizations on the operational side) into this? To what extent are team owners concerned with data partitions and multi-threading?

Not at all, says White. However, they have been doing analytics that are much closer to Excel operations than anything bordering supercomputing. In fact, when asked about what Urika replaced at MLB shops, White hinted that it didn’t go too far beyond Excel or general business intelligence tools. This, however, he says, will be a gamechanger. Literally.

To be clear, this machine isn’t powering immediate gameplay. MLB rules prohibit the use of electronic devices during game time. When news first leaked that a mystery team was using the graph appliance there was some confusion about “real time game play data” that could shape the decision-making of coaches. This isn’t the case. Rather, the analytics are run after the fact (and before new games, seasons, or investments in player contracts). These are data for the playbook—the one analog “device” that’s allowed. And the output of the graph should lead to an approximate answer to, “when the ball hits at this level under these conditions based on history and contemporary circumstances X is the best option.”

It would be a thrill to compare playbooks before and after advanced analytics have been run but, sadly, we’d need to know the team who bought the Urika. There have been a lot of guesses, perhaps we should look to the downtrodden MLB club that suddenly pulls some amazing wins out of thin air this year for clues.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Pioneering Programmers Awarded Presidential Medal of Freedom

November 30, 2016

In an awards ceremony on November 22, President Barack Obama recognized 21 recipients with the Presidential Medal of Freedom, the Nation’s highest civilian honor. Read more…

By Tiffany Trader

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This