Inside Major League Baseball’s “Hypothesis Machine”

By Nicole Hemsoth

April 3, 2014

When it comes to sports statistics, there’s no richer source of historical data than baseball. With over 140 years of detailed information on individual players, teams, and winning trends, the addition of digital data is powering even deeper analytical capability to help fans and team owners make decisions.

Baseball data, over 95% of which has been created over the last five years, will continue to mount—leading MLB decision-makers to invest in more powerful analytics tools. While there are plenty of business intelligence and database options, teams are now looking to supercomputing—or at least, the spawn of HPC—to help them gain the competitive edge.

Last June, we talked with Cray CEO, Peter Ungaro, who dropped a hint that MLB was their big Urika graph analytical appliance user, but waited on the sidelines for more details, including who the team might be. While the team is still a secret (understandably—this could be the skeleton key to a winning season) we were able to get some details about YarcData’s role in MLB from Cray’s Tim White, who manages the government and intelligence business unit and has been the point man for the mystery team’s walk down graph analytics lane.

White, who left General Dynamics’ Advanced Information Systems division after 8 years to come to Cray, is no stranger to advanced analytics. At General Dynamics, he ran national security, law enforcement and intelligence projects on site, where he was able to understand firsthand the challenges and benefits of real-time information gathering. He said when Cray called him to push into markets with some of the toughest graph analytics problems, he immediately saw the opportunity. Government use of complex graphs to mine for relationships between disparate datasets is expected—but the same value there in understanding how multiple variables translate into unseen ties applies to baseball (and other areas, including fraud detection, drug discovery and more) just as well.

He explained that what teams, just like governments and drug development researchers, are looking for is a “hypothesis machine” that will allow them to integrate multiple, deep data wells and pose several questions against the same data. They are looking for platforms that allow users to look at facets of a given dataset, adding new cuts to see how certain conditions affect the reflection of a hypothesized reality. While he says there are multiple tools for doing this on both the hardware and software front, there is a particular marriage of both elements that works particularly well for graphs. This combination includes a large shared memory machine that lets users cut around unpartitionable problems. At the software core are SPARQL and RDF, which he agrees are specific tools but are the only ones that can tackle large-scale complex graph problems that are otherwise difficult to untangle without the blend they’ve packaged into a Urika box.

urikaTo put the complexity of the graphs MLB is working with in context, White told us that they’re operating in the 10-20 billion edge graph range. That’s no problem for Urika, however, says White, at least compared to trying to manage that kind of large-scale problem using basic joins. For background, the appliance is graph-specific and tailored to RDF, which can be an unwieldy data structure unless it’s humming on a big shared memory system. Urika uses the thread-hungry Cray native XMT processor and while it has that capability, it’s not designed for running floating point vector calculations. The value here is dipping into deep memory to hunt for similarities and associations that expose buried relationships between factors.

“Urika is unique in that it’s a global shared memory machine that lets you look at data in an unpartitioned fashion. This is very critical if you’re looking at graphs, which by nature are unpredictable. Further, certain graphs are non-partitionable—and if you do partition it, it changes the result of a query,” White explained. “There is no MapReduce job or partitioning that will do anything but fracture the graph to a point where it’s no longer reconstructable—and even for those you can reconstruct, it would take a lot of compute power.” Where this works is with memory-bound problems versus those that are compute-bound, in other words.

Urika is also fitting for the big data of MLB given the disparate data sets required to piece together a best-case-scenario for team leaders. There are lots of sources and combining that data requires a data structure that allows for federated queries. This is exactly the reason big pharma and a few others find RDF machines useful (in the case using SPARQL queries). “You could go ahead an do the equivalent of a hundred-way join from a relational database—the question is, how big of a dataset can you do that against?” asked White. “Unless you have something like Urika, which has the ability to do it memory and with massive multi-threading, you’re not able to look at enough data.” He said that when compared to what they’re doing inside Urika, for normal relational databases, this would be the equivalent of a 30-50 way join. Pulling from the large shared memory pool using SPARQL queries offers a more seamless blending of conditions to hypothesize against. And herein lies the selling point for operational budget-constrained MLB.

Although we’re not privy to pricing, the Urika appliance runs in the order of well over a million bucks. However, to put this into some context, consider the ROI. The average win in baseball brings a smaller team a couple of million, a large MLB team between $5 and $7 million. That’s one win. Let’s say Cray’s graph appliance is able to help team owners piece together what happens if you take the average player for  a particular position versus the player they’re analyzing across the course of a season. While those many factors involved are multifaceted, when it comes down to one small decision at the bottom of the ninth with loaded bases, that one switch in decision-making could mean the loss or gain of millions in a winning situation.

So this all begs the question, why buy an expensive near real-time analytical HPC platform if the time itself isn’t necessarily an issue? Couldn’t there be cheaper ways to run this on a SAS or SAP HANA box after the fact? Or for that matter, a shared memory cluster of one’s own devising primed to run the latest, greatest analytics software?

White responded by pointing to the nature of their approach to graph analytics, agreeing that real time here doesn’t have anything to do with immediate in-game decisions. Rather, their queries can be submitted, run very quickly for fast analysis, then analysts can run that same query again in a hurry with different variables. This effectively allows them to tweak the question with new conditions. This “hypothesis machine” approach is what makes the difference, says White, pointing to the burdened systems MLB and other organizations have that can’t be used to tailor one query after the next in rapid succession to find answers and hidden connection between factors they didn’t even know to ask.

The variables for each iterative query range from the outlandish to the expected (RBI, homerun histories, Golden Glove data) and even to the subjective (sentiment of fans, coach and player confidence, salaries, TV revenue, etc.). All of these are collectively referred to as “field effects” which is a certain science in itself.

White agrees that there are many excellent analytical software and hardware platforms out there to choose from, but most of those tend to focus on data that is known. Such platforms consider data from a range of databases that are all finding answers, but don’t go far enough into the masked relationships that baseball (and for that matter government intelligence, pharma and others) require to make real progress.

“We’re past the point of thinking software can solve all the problems,” said White. The hardware matters—in fact, it’s the reason why big organizations with large-scale data-driven challenges are looking seriously at HPC platforms. They’ve managed to eek all the performance out of their code, custom or otherwise, and now see the need for a marriage between the metal and the mind—in MLB, big government and beyond.

“These users want to ask a lot of questions. They want to get those results right away, then change the question. So they go through 20 or 30 different facets of the same question to find what’s interesting. It’s the iterative quality of Urika that’s interesting, it becomes their hypothesis machine—they go through all the hypothetical queries to find the difference maker,” says White.

So we’ve worked out the why on the graph analytics investment side, but with so much of this still subjective science, how on earth did Cray manage to talk an MLB team (these are historically cash-strapped organizations on the operational side) into this? To what extent are team owners concerned with data partitions and multi-threading?

Not at all, says White. However, they have been doing analytics that are much closer to Excel operations than anything bordering supercomputing. In fact, when asked about what Urika replaced at MLB shops, White hinted that it didn’t go too far beyond Excel or general business intelligence tools. This, however, he says, will be a gamechanger. Literally.

To be clear, this machine isn’t powering immediate gameplay. MLB rules prohibit the use of electronic devices during game time. When news first leaked that a mystery team was using the graph appliance there was some confusion about “real time game play data” that could shape the decision-making of coaches. This isn’t the case. Rather, the analytics are run after the fact (and before new games, seasons, or investments in player contracts). These are data for the playbook—the one analog “device” that’s allowed. And the output of the graph should lead to an approximate answer to, “when the ball hits at this level under these conditions based on history and contemporary circumstances X is the best option.”

It would be a thrill to compare playbooks before and after advanced analytics have been run but, sadly, we’d need to know the team who bought the Urika. There have been a lot of guesses, perhaps we should look to the downtrodden MLB club that suddenly pulls some amazing wins out of thin air this year for clues.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles. The Read more…

By Staff

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This