Inside Major League Baseball’s “Hypothesis Machine”

By Nicole Hemsoth

April 3, 2014

When it comes to sports statistics, there’s no richer source of historical data than baseball. With over 140 years of detailed information on individual players, teams, and winning trends, the addition of digital data is powering even deeper analytical capability to help fans and team owners make decisions.

Baseball data, over 95% of which has been created over the last five years, will continue to mount—leading MLB decision-makers to invest in more powerful analytics tools. While there are plenty of business intelligence and database options, teams are now looking to supercomputing—or at least, the spawn of HPC—to help them gain the competitive edge.

Last June, we talked with Cray CEO, Peter Ungaro, who dropped a hint that MLB was their big Urika graph analytical appliance user, but waited on the sidelines for more details, including who the team might be. While the team is still a secret (understandably—this could be the skeleton key to a winning season) we were able to get some details about YarcData’s role in MLB from Cray’s Tim White, who manages the government and intelligence business unit and has been the point man for the mystery team’s walk down graph analytics lane.

White, who left General Dynamics’ Advanced Information Systems division after 8 years to come to Cray, is no stranger to advanced analytics. At General Dynamics, he ran national security, law enforcement and intelligence projects on site, where he was able to understand firsthand the challenges and benefits of real-time information gathering. He said when Cray called him to push into markets with some of the toughest graph analytics problems, he immediately saw the opportunity. Government use of complex graphs to mine for relationships between disparate datasets is expected—but the same value there in understanding how multiple variables translate into unseen ties applies to baseball (and other areas, including fraud detection, drug discovery and more) just as well.

He explained that what teams, just like governments and drug development researchers, are looking for is a “hypothesis machine” that will allow them to integrate multiple, deep data wells and pose several questions against the same data. They are looking for platforms that allow users to look at facets of a given dataset, adding new cuts to see how certain conditions affect the reflection of a hypothesized reality. While he says there are multiple tools for doing this on both the hardware and software front, there is a particular marriage of both elements that works particularly well for graphs. This combination includes a large shared memory machine that lets users cut around unpartitionable problems. At the software core are SPARQL and RDF, which he agrees are specific tools but are the only ones that can tackle large-scale complex graph problems that are otherwise difficult to untangle without the blend they’ve packaged into a Urika box.

urikaTo put the complexity of the graphs MLB is working with in context, White told us that they’re operating in the 10-20 billion edge graph range. That’s no problem for Urika, however, says White, at least compared to trying to manage that kind of large-scale problem using basic joins. For background, the appliance is graph-specific and tailored to RDF, which can be an unwieldy data structure unless it’s humming on a big shared memory system. Urika uses the thread-hungry Cray native XMT processor and while it has that capability, it’s not designed for running floating point vector calculations. The value here is dipping into deep memory to hunt for similarities and associations that expose buried relationships between factors.

“Urika is unique in that it’s a global shared memory machine that lets you look at data in an unpartitioned fashion. This is very critical if you’re looking at graphs, which by nature are unpredictable. Further, certain graphs are non-partitionable—and if you do partition it, it changes the result of a query,” White explained. “There is no MapReduce job or partitioning that will do anything but fracture the graph to a point where it’s no longer reconstructable—and even for those you can reconstruct, it would take a lot of compute power.” Where this works is with memory-bound problems versus those that are compute-bound, in other words.

Urika is also fitting for the big data of MLB given the disparate data sets required to piece together a best-case-scenario for team leaders. There are lots of sources and combining that data requires a data structure that allows for federated queries. This is exactly the reason big pharma and a few others find RDF machines useful (in the case using SPARQL queries). “You could go ahead an do the equivalent of a hundred-way join from a relational database—the question is, how big of a dataset can you do that against?” asked White. “Unless you have something like Urika, which has the ability to do it memory and with massive multi-threading, you’re not able to look at enough data.” He said that when compared to what they’re doing inside Urika, for normal relational databases, this would be the equivalent of a 30-50 way join. Pulling from the large shared memory pool using SPARQL queries offers a more seamless blending of conditions to hypothesize against. And herein lies the selling point for operational budget-constrained MLB.

Although we’re not privy to pricing, the Urika appliance runs in the order of well over a million bucks. However, to put this into some context, consider the ROI. The average win in baseball brings a smaller team a couple of million, a large MLB team between $5 and $7 million. That’s one win. Let’s say Cray’s graph appliance is able to help team owners piece together what happens if you take the average player for  a particular position versus the player they’re analyzing across the course of a season. While those many factors involved are multifaceted, when it comes down to one small decision at the bottom of the ninth with loaded bases, that one switch in decision-making could mean the loss or gain of millions in a winning situation.

So this all begs the question, why buy an expensive near real-time analytical HPC platform if the time itself isn’t necessarily an issue? Couldn’t there be cheaper ways to run this on a SAS or SAP HANA box after the fact? Or for that matter, a shared memory cluster of one’s own devising primed to run the latest, greatest analytics software?

White responded by pointing to the nature of their approach to graph analytics, agreeing that real time here doesn’t have anything to do with immediate in-game decisions. Rather, their queries can be submitted, run very quickly for fast analysis, then analysts can run that same query again in a hurry with different variables. This effectively allows them to tweak the question with new conditions. This “hypothesis machine” approach is what makes the difference, says White, pointing to the burdened systems MLB and other organizations have that can’t be used to tailor one query after the next in rapid succession to find answers and hidden connection between factors they didn’t even know to ask.

The variables for each iterative query range from the outlandish to the expected (RBI, homerun histories, Golden Glove data) and even to the subjective (sentiment of fans, coach and player confidence, salaries, TV revenue, etc.). All of these are collectively referred to as “field effects” which is a certain science in itself.

White agrees that there are many excellent analytical software and hardware platforms out there to choose from, but most of those tend to focus on data that is known. Such platforms consider data from a range of databases that are all finding answers, but don’t go far enough into the masked relationships that baseball (and for that matter government intelligence, pharma and others) require to make real progress.

“We’re past the point of thinking software can solve all the problems,” said White. The hardware matters—in fact, it’s the reason why big organizations with large-scale data-driven challenges are looking seriously at HPC platforms. They’ve managed to eek all the performance out of their code, custom or otherwise, and now see the need for a marriage between the metal and the mind—in MLB, big government and beyond.

“These users want to ask a lot of questions. They want to get those results right away, then change the question. So they go through 20 or 30 different facets of the same question to find what’s interesting. It’s the iterative quality of Urika that’s interesting, it becomes their hypothesis machine—they go through all the hypothetical queries to find the difference maker,” says White.

So we’ve worked out the why on the graph analytics investment side, but with so much of this still subjective science, how on earth did Cray manage to talk an MLB team (these are historically cash-strapped organizations on the operational side) into this? To what extent are team owners concerned with data partitions and multi-threading?

Not at all, says White. However, they have been doing analytics that are much closer to Excel operations than anything bordering supercomputing. In fact, when asked about what Urika replaced at MLB shops, White hinted that it didn’t go too far beyond Excel or general business intelligence tools. This, however, he says, will be a gamechanger. Literally.

To be clear, this machine isn’t powering immediate gameplay. MLB rules prohibit the use of electronic devices during game time. When news first leaked that a mystery team was using the graph appliance there was some confusion about “real time game play data” that could shape the decision-making of coaches. This isn’t the case. Rather, the analytics are run after the fact (and before new games, seasons, or investments in player contracts). These are data for the playbook—the one analog “device” that’s allowed. And the output of the graph should lead to an approximate answer to, “when the ball hits at this level under these conditions based on history and contemporary circumstances X is the best option.”

It would be a thrill to compare playbooks before and after advanced analytics have been run but, sadly, we’d need to know the team who bought the Urika. There have been a lot of guesses, perhaps we should look to the downtrodden MLB club that suddenly pulls some amazing wins out of thin air this year for clues.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

CMU’s Latest “Card Shark” – Libratus – is Beating the Poker Pros (Again)

January 20, 2017

It’s starting to look like Carnegie Mellon University has a gambling problem – can’t stay away from the poker table. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Jan. 19, 2017)

January 19, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This