IBM Mainframe Celebrates 50 Years

By Tiffany Trader

April 8, 2014

Fifty years ago, IBM unveiled the first System/360 mainframe, considered to be “the most important product announcement in the company’s history.” Despite the rapid pace of advance in the computing field, not only are mainframes still very much in use today, the launch of the System/360 introduced technical concepts that would become part of the fabric of modern computing.

As EnterpriseTech editor-in-chief Timothy Prickett Morgan writes, “that these virtual card wallopers are still around is a testament to the fact that software is sticky, that change is difficult or sometimes not worth the trouble, either technically or economically, and that gradual evolution is what makes IT products endure.”

The System/360 came to fruition after three years of development, under the direction of then IBM chairman Thomas J Watson Jr, assisted by chief architect Gene Amdahl, project manager Fred Brooks, and launch manager John Opel.

IBM invested two years of revenue into the project. As TPM writes, this was a gutsy and expensive undertaking, a bold move the likes of which is seldom undertaken by public entities. A project that was budgeted at $675 million – for factories, hardware and software development – ended up with a 1961 price tag of $5 billion (worth about $39 billon in today’s dollars).

The risk paid off handsomely, better than anyone could have imagined. Writes TPM: “IBM was breaking ground in so many new technologies, from chip manufacturing to software development, that it would have been hard to keep to the schedule and within the budget. The System/360 also turned IBM into a chip manufacturer on a large scale for the first time, and it also made the disk drives and reel-to-reel tapes that are visually synonymous with the mainframe in culture.”

In the first five years post-launch, IBM sold 4,000 of the mainframes and had orders for 20,000 more. It did not take long for Big Blue to recoup its extravagant initial layout. Profits grew by 20-25 percent per year in the late 1960s, dipping in the 1970s as peak demand dampened. At that point, IBM started pushing System/3 minicomputers, which ate into mainframe sales a bit. The result, writes TPM: “two healthy – although unfortunately incompatible – product lines, which incidentally live on as the Power Systems and the System z mainframe today.”

The 360 name reflected the machine’s general purpose nature. System/360 was intended for companies both big and small and for commercial as well as scientific use. The idea was radical, one machine that could span a wide performance range and could run the same operation system and application software to solve a wide range of business and scientific problems.

The System/360 also was revolutionary for another reason. IBM essentially merged its five product lines into one compatible family using an architecture that featured 8-bit byte addressing, which lives on in every computer today.

“After the S/360,” writes the company, “we no longer talked about automating particular tasks with ‘computers.’ Now, we talked about managing complex processes through ‘computer systems.’”

“It was the first product family that allowed business data-processing operations to grow from the smallest machine to the largest without the enormous expense of rewriting vital programs… Code written for the smallest member of the family had to be upwardly compatible with each of the family’s larger processors. Peripherals such as printers, communications devices, storage, and input-output devices had to be compatible across the family.”

The early IBM mainframes ran the performance spectrum from one to 50MHz. Memory ranged from a minimum 8KB up to 8MB in the high-end models.

While some view mainframes as old and outdated, 80 percent of the world’s corporate data is still managed by mainframes. Although the first model was revolutionary, today’s descendants are many times more powerful. Today’s largest mainframes can execute 52,000 business transactions per second. 40-50 new businesses every year get on a mainframe.

At a press event held in New York City today celebrating the half-century milestone, Steve Mills, IBM Senior VP & Group Executive, Software & Systems, ran through some of the highlights of the IBM mainframe 50 years after its introduction.

  • 23 billion ATM transactions per year are processed by the mainframe, worth more than $1.4 trillion.
  • $6 trillion credit and debit card payments processed annually.
  • 3 billion travelers a year access mainframes in making their arrangements.
  • 30 billion business transactions are processed daily.

Throughout the five decades since the mainframe’s debut, IBM has continued to emphasize compatibility. “Applications must continue to work properly. Thus, much of the design work for new hardware and system software revolves around this compatibility requirement,” maintains IBM. In cases where it cannot provide that backwards compatibility, IBM aims to give users at least a year’s warning that software changes will be required.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

2017 Gordon Bell Prize Finalists Named

October 23, 2017

The three finalists for this year’s Gordon Bell Prize in High Performance Computing have been announced. They include two papers on projects run on China’s Sunway TaihuLight system and a third paper on 3D image recon Read more…

By John Russell

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This