Big Science, Tiny Microservers: IBM Research Pushes 64-Bit Possibilities

By Nicole Hemsoth

April 10, 2014

Four years ago, a friend dropped a Sheeva Plug into the hands of Ronald Luijten, a system designer at IBM Research in Zurich. At the time, neither could have realized the development cycle this simple gift would spark.

If you’re not familiar, Sheeva Plugs are compact devices that look a lot like your laptop power adapter, except instead of an electrical output plug, there’s a handy gigabit Ethernet port. Luitjen, whose primary interests lie in data movement and energy management, immediately saw the potential. He put his minimalist inclinations to work, and within a few months, had a VNC, an OS and a web server running from a USB attached hard drive. What struck him the most, however, was when he measured it from the mains and found the whole thing was running at a mere 4.3 watts. “I couldn’t believe this,” he said. “When I thought about it further, I saw it was the beginning of a revolution.”

This discovery coincided with a much larger project Luitjen was involved with at IBM Research. In conjunction with ASTRON, a team tapped some of Big Blue’s best minds to help the Square Kilometer Array (SKA) team discover new solutions to solve the unprecedented power, compute and data movement challenges inherent to measuring the Big Bang. Over the next decade, SKA researchers will be able to look back 13.8 billion years (and over a billion dollars) with 2 million antennae that will pull together a signal at the end of each day based on 10-14 exabytes of data, culminating in a daily condensed dose of info in the petabyte range. To do this will require well over what the exascale machines of the 2020 timeframe will offer but there’s another problem. The signals are being collected at the most radio wave-free locations one earth,  which happen to be places where there’s no power grid or internet.

This was the perfect set of conditions for IBM and SKA/ASTRON researchers to think outside of the power-hungry boxes that are required to feed this kind of science. And the perfect opportunity for an ultra low-power approach that recognizes that the compute is easy–it’s the data movement that’s the real power drain. Since altering the speed of light is out of the question, the only answer seems to be integrating as much as possible into a neat whole. While some of that technology still needs to mature (particularly in areas like stacked memory), Luitjen was able to demonstrate how big compute and little movement can be lashed together for maximum efficiency and multiple workloads.

But this isn’t all in the name of grand science. In addition to seeing a path to helping SKA with its noble mission, IBM too was able to see a path to meeting the “compute is free but data is not” paradigm. Luijten says their needs were specific; they wanted to see a microserver that could provide an ultra low-power “datacenter in a box” that could leverage commodity parts and condensed packaging. Further, it would have to be true 64-bit to be of commercial value (which meant no ARM since it wasn’t on the near horizon then), and would have to run a server-class operating system.

Building off the lesson learned during his Sheeva Plug jaunt, Luijten set to work with the one and only 64-bit chip on the market. In this case, it was the P5020 chip from Freescale—a product made specifically for the embedded market, thus without any of the software required for doing anything other than powering small devices operating on custom code. He says the Linux that came in the box was limited and he couldn’t even run the compiler. There was certainly no OS to meet IBM’s eventual needs, but with the help of a colleague and folks at Freescale, Luijten was able to get Fedora up and running on the 2.0 GHz Power-based architecture. And so the DOME Microserver was born.

fedora_bootGetting Fedora to sing on the DOME was one the first hurdle; the absence of an ecosystem was an incredible challenge and multiple iterations of attempting the use of different OS approaches that blended server and embedded realms. He imagined that finally being able to implement a functional server-class OS would be half of the trouble–that the real challenges were ahead in being able to build some functionality application-wise around that.

However, to Luijten’s surprise, just two days after the Fedora success, they were able to get IBM’s DB2 up and running on the tiny motherboard. Without compiling. This is indeed the same DB2 that requires ultra-pricey System X datacenters at a much greater up-front and of course, operational/power cost.

Luijten relayed a quick story about how he had a chat with upper management on the development side at IBM about what they were able to do and he flat-out denied it was possible. “He probably still doesn’t believe it to this day,” he laughed. But sure enough, he said, they had a program that was running for weeks on a single node end atop DB2 with a PHP app on a web browser that could kick through a basket of workloads on the Freescale-carried DB2 engine, all at around 55 watts.

DOMEThe very small team (just Luijten, another comrade and a group of researchers at Freescale) grabbed the chance to take hold of the new incarnation of the chip, which moved them from dual-core to 12 cores—a major leap that didn’t require a recompile to run DB2 again. The newest part, the T4240 runs at 60 watts but comes with some major enhancements to his aims in terms of threading (this is “true threading” he says, not hyperthreading), bumps to three memory channels, and moves them down to 28nm (versus 45 nm).

comparison_slide

The datacenter in a box approach with 128 of these boards using the newest chip yields 1536 cores and 3072 threads with between 3 or 6 TB of DRAM with a novel hot water cooling (ala SuperMUC) installation makes this a rather compelling idea for cloud datacenters and of course, for power-aware, poor folks who want to their commercial or research applications to run in a lightweight, cheap way. As for HPC, it’s all about potential and possibilities at this point versus anything practical. Again, this is a proof of concept project. Benchmark results and scaling capabilities will be forthcoming, but for anyone who wants a firsthand lesson in some of the lessons of a non-existent software ecosystem, the ARM guys aren’t the only ones to look to for war stories.

Just as a side note, while sitting with Luijten at the IDC User Forum this week, we set the little server node motherboard next to my iPhone—it was just a tad longer, do some mental comparisons for size scale or take a look below at his part versus a BlueGene board. Sitting this next to a Calexda or Moonshot offers about the same viewing experience.

comparison_shmarison

Microservers should package the entire server node motherboard into a single microchip, leaving off some elements that wouldn’t make sense (including DRAM, power conversion logic and NOR Flash since they don’t fit), says Luijten. There are many motherboards that have graphics and such, but this is pared down.

And yes, this was from a conversation at an HPC-centric event, which might strike some of you as a bit strange. Luijten says that he definitely does not do HPC but Earl Joseph believes strongly that the DOME microserver project is a perfect example of the type of technology that could be disruptive to the industry going forward. It’s power constrained, price-aware, and performance-oriented. While the specs on the flops front are in short order (you can do some quick math based on what Freescale has made available—not shabby for the size and power envelope), Joseph is spot-on. This was one of the more compelling presentations during the two days in Santa Fe and based on sideline conversations, one of the most widely-discussed.

It should be noted that these aren’t coming to a rack near you anytime soon. It’s still a research project, but it’s one that Freescale isn’t taking lightly, even if it’s not been as mainstream at IBM as Luijten might like to see one day. This would make a pretty compelling cloud server for Freescale and they’re working with him now to run some benchmarks to get a better baseline on the performance capabilities that will be shared in a press release eventually.

What IBM will do with the eventual success or interest in the concept on the development side remains anyone’s best guess—especially as the first drums of the ARM invasion can be heard beating in the not-so-far distance. “IBM sold off its SystemX business is because the moment a technology becomes commodity, they get out of the game,” Luijten  reflected. They can’t sustain a business on driving a commodity market, hence they’re looking now to things like cognitive computing, among other efforts.

He says that while IBM is not incredibly interested in what he’s working on now, at least in any serious product-driven way, he’s found that with research like this, it helps to be more than just a good technical engineer. “Someone said I’m like an entrepreneur,” he laughed. “It’s not enough to develop this technology, it has to be marketed and you have to find interest however you can.”

We’ll close with the most recent development/progress via one of his slides. And of course, we’ll continue to watch this, even if it’s remote from the HPC we’re looking at now.

status_slide

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Democratization of HPC Part 3: Ninth Graders Tap HPC in the Cloud to Design Flying Boats

October 18, 2018

This is the third in a series of articles demonstrating the growing acceptance of high-performance computing (HPC) in new user communities and application areas. In this article we present UberCloud use case #208 on how Read more…

By Wolfgang Gentzsch and Håkon Bull Hove

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phase, on the near side of a difficult chasm to cross. In respon Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

One Small Step Toward Mars: One Giant Leap for Supercomputing

Since the days of the Space Race between the U.S. and the former Soviet Union, we have continually sought ways to perform experiments in space. Read more…

IBM Accelerated Insights

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questions and, you won’t be surprised, offers a firm “it’s wo Read more…

By John Russell

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phas Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questio Read more…

By John Russell

Dell EMC to Supply U Michigan’s Great Lakes Cluster

October 16, 2018

The University of Michigan (U-M) today announced Dell EMC is the lead vendor for U-M’s $4.8 million Great Lakes HPC cluster scheduled for deployment in first Read more…

By John Russell

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Nvidia Platform Pushes GPUs into Machine Learning, High Performance Data Analytics

October 10, 2018

GPU leader Nvidia, generally associated with deep learning, autonomous vehicles and other higher-end enterprise and scientific workloads (and gaming, of course) Read more…

By Doug Black

Federal Investment in Exascale – What It Really Means

October 10, 2018

Earlier this month, the EuroHPC JU (Joint Undertaking) reached critical mass, and it seems all EU and affiliated member states, bar the UK (unsurprisingly), have or will sign on. The EuroHPC JU was born from a recognition that individual EU member states, and the EU as a whole, were significantly underinvesting in HPC compared to the US, China and Japan, who all have their own exascale investment and delivery strategies (NSCI, 13th 5 Year Plan, Post-K, etc). Read more…

By Dairsie Latimer

NERSC-9 Clues Found in NERSC 2017 Annual Report

October 8, 2018

If you’re eager to find out who’ll supply NERSC’s next-gen supercomputer, codenamed NERSC-9, here’s a project update to tide you over until the winning bid and system details are revealed. The upcoming system is referenced several times in the recently published 2017 NERSC annual report. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

Leading Solution Providers

HPC on Wall Street 2018 Booth Video Tours Playlist

Arista

Dell EMC

IBM

Intel

RStor

VMWare

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Aerodynamic Simulation Reveals Best Position in a Peloton of Cyclists

July 5, 2018

Eindhoven University of Technology (TU/e) and KU Leuven research group conducts the largest numerical simulation ever done in the sport industry and cycling discipline. The goal was to understand the aerodynamic interactions in the peloton, i.e., the main pack of cyclists in a race. Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This