Big Science, Tiny Microservers: IBM Research Pushes 64-Bit Possibilities

By Nicole Hemsoth

April 10, 2014

Four years ago, a friend dropped a Sheeva Plug into the hands of Ronald Luijten, a system designer at IBM Research in Zurich. At the time, neither could have realized the development cycle this simple gift would spark.

If you’re not familiar, Sheeva Plugs are compact devices that look a lot like your laptop power adapter, except instead of an electrical output plug, there’s a handy gigabit Ethernet port. Luitjen, whose primary interests lie in data movement and energy management, immediately saw the potential. He put his minimalist inclinations to work, and within a few months, had a VNC, an OS and a web server running from a USB attached hard drive. What struck him the most, however, was when he measured it from the mains and found the whole thing was running at a mere 4.3 watts. “I couldn’t believe this,” he said. “When I thought about it further, I saw it was the beginning of a revolution.”

This discovery coincided with a much larger project Luitjen was involved with at IBM Research. In conjunction with ASTRON, a team tapped some of Big Blue’s best minds to help the Square Kilometer Array (SKA) team discover new solutions to solve the unprecedented power, compute and data movement challenges inherent to measuring the Big Bang. Over the next decade, SKA researchers will be able to look back 13.8 billion years (and over a billion dollars) with 2 million antennae that will pull together a signal at the end of each day based on 10-14 exabytes of data, culminating in a daily condensed dose of info in the petabyte range. To do this will require well over what the exascale machines of the 2020 timeframe will offer but there’s another problem. The signals are being collected at the most radio wave-free locations one earth,  which happen to be places where there’s no power grid or internet.

This was the perfect set of conditions for IBM and SKA/ASTRON researchers to think outside of the power-hungry boxes that are required to feed this kind of science. And the perfect opportunity for an ultra low-power approach that recognizes that the compute is easy–it’s the data movement that’s the real power drain. Since altering the speed of light is out of the question, the only answer seems to be integrating as much as possible into a neat whole. While some of that technology still needs to mature (particularly in areas like stacked memory), Luitjen was able to demonstrate how big compute and little movement can be lashed together for maximum efficiency and multiple workloads.

But this isn’t all in the name of grand science. In addition to seeing a path to helping SKA with its noble mission, IBM too was able to see a path to meeting the “compute is free but data is not” paradigm. Luijten says their needs were specific; they wanted to see a microserver that could provide an ultra low-power “datacenter in a box” that could leverage commodity parts and condensed packaging. Further, it would have to be true 64-bit to be of commercial value (which meant no ARM since it wasn’t on the near horizon then), and would have to run a server-class operating system.

Building off the lesson learned during his Sheeva Plug jaunt, Luijten set to work with the one and only 64-bit chip on the market. In this case, it was the P5020 chip from Freescale—a product made specifically for the embedded market, thus without any of the software required for doing anything other than powering small devices operating on custom code. He says the Linux that came in the box was limited and he couldn’t even run the compiler. There was certainly no OS to meet IBM’s eventual needs, but with the help of a colleague and folks at Freescale, Luijten was able to get Fedora up and running on the 2.0 GHz Power-based architecture. And so the DOME Microserver was born.

fedora_bootGetting Fedora to sing on the DOME was one the first hurdle; the absence of an ecosystem was an incredible challenge and multiple iterations of attempting the use of different OS approaches that blended server and embedded realms. He imagined that finally being able to implement a functional server-class OS would be half of the trouble–that the real challenges were ahead in being able to build some functionality application-wise around that.

However, to Luijten’s surprise, just two days after the Fedora success, they were able to get IBM’s DB2 up and running on the tiny motherboard. Without compiling. This is indeed the same DB2 that requires ultra-pricey System X datacenters at a much greater up-front and of course, operational/power cost.

Luijten relayed a quick story about how he had a chat with upper management on the development side at IBM about what they were able to do and he flat-out denied it was possible. “He probably still doesn’t believe it to this day,” he laughed. But sure enough, he said, they had a program that was running for weeks on a single node end atop DB2 with a PHP app on a web browser that could kick through a basket of workloads on the Freescale-carried DB2 engine, all at around 55 watts.

DOMEThe very small team (just Luijten, another comrade and a group of researchers at Freescale) grabbed the chance to take hold of the new incarnation of the chip, which moved them from dual-core to 12 cores—a major leap that didn’t require a recompile to run DB2 again. The newest part, the T4240 runs at 60 watts but comes with some major enhancements to his aims in terms of threading (this is “true threading” he says, not hyperthreading), bumps to three memory channels, and moves them down to 28nm (versus 45 nm).

comparison_slide

The datacenter in a box approach with 128 of these boards using the newest chip yields 1536 cores and 3072 threads with between 3 or 6 TB of DRAM with a novel hot water cooling (ala SuperMUC) installation makes this a rather compelling idea for cloud datacenters and of course, for power-aware, poor folks who want to their commercial or research applications to run in a lightweight, cheap way. As for HPC, it’s all about potential and possibilities at this point versus anything practical. Again, this is a proof of concept project. Benchmark results and scaling capabilities will be forthcoming, but for anyone who wants a firsthand lesson in some of the lessons of a non-existent software ecosystem, the ARM guys aren’t the only ones to look to for war stories.

Just as a side note, while sitting with Luijten at the IDC User Forum this week, we set the little server node motherboard next to my iPhone—it was just a tad longer, do some mental comparisons for size scale or take a look below at his part versus a BlueGene board. Sitting this next to a Calexda or Moonshot offers about the same viewing experience.

comparison_shmarison

Microservers should package the entire server node motherboard into a single microchip, leaving off some elements that wouldn’t make sense (including DRAM, power conversion logic and NOR Flash since they don’t fit), says Luijten. There are many motherboards that have graphics and such, but this is pared down.

And yes, this was from a conversation at an HPC-centric event, which might strike some of you as a bit strange. Luijten says that he definitely does not do HPC but Earl Joseph believes strongly that the DOME microserver project is a perfect example of the type of technology that could be disruptive to the industry going forward. It’s power constrained, price-aware, and performance-oriented. While the specs on the flops front are in short order (you can do some quick math based on what Freescale has made available—not shabby for the size and power envelope), Joseph is spot-on. This was one of the more compelling presentations during the two days in Santa Fe and based on sideline conversations, one of the most widely-discussed.

It should be noted that these aren’t coming to a rack near you anytime soon. It’s still a research project, but it’s one that Freescale isn’t taking lightly, even if it’s not been as mainstream at IBM as Luijten might like to see one day. This would make a pretty compelling cloud server for Freescale and they’re working with him now to run some benchmarks to get a better baseline on the performance capabilities that will be shared in a press release eventually.

What IBM will do with the eventual success or interest in the concept on the development side remains anyone’s best guess—especially as the first drums of the ARM invasion can be heard beating in the not-so-far distance. “IBM sold off its SystemX business is because the moment a technology becomes commodity, they get out of the game,” Luijten  reflected. They can’t sustain a business on driving a commodity market, hence they’re looking now to things like cognitive computing, among other efforts.

He says that while IBM is not incredibly interested in what he’s working on now, at least in any serious product-driven way, he’s found that with research like this, it helps to be more than just a good technical engineer. “Someone said I’m like an entrepreneur,” he laughed. “It’s not enough to develop this technology, it has to be marketed and you have to find interest however you can.”

We’ll close with the most recent development/progress via one of his slides. And of course, we’ll continue to watch this, even if it’s remote from the HPC we’re looking at now.

status_slide

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This