Big Science, Tiny Microservers: IBM Research Pushes 64-Bit Possibilities

By Nicole Hemsoth

April 10, 2014

Four years ago, a friend dropped a Sheeva Plug into the hands of Ronald Luijten, a system designer at IBM Research in Zurich. At the time, neither could have realized the development cycle this simple gift would spark.

If you’re not familiar, Sheeva Plugs are compact devices that look a lot like your laptop power adapter, except instead of an electrical output plug, there’s a handy gigabit Ethernet port. Luitjen, whose primary interests lie in data movement and energy management, immediately saw the potential. He put his minimalist inclinations to work, and within a few months, had a VNC, an OS and a web server running from a USB attached hard drive. What struck him the most, however, was when he measured it from the mains and found the whole thing was running at a mere 4.3 watts. “I couldn’t believe this,” he said. “When I thought about it further, I saw it was the beginning of a revolution.”

This discovery coincided with a much larger project Luitjen was involved with at IBM Research. In conjunction with ASTRON, a team tapped some of Big Blue’s best minds to help the Square Kilometer Array (SKA) team discover new solutions to solve the unprecedented power, compute and data movement challenges inherent to measuring the Big Bang. Over the next decade, SKA researchers will be able to look back 13.8 billion years (and over a billion dollars) with 2 million antennae that will pull together a signal at the end of each day based on 10-14 exabytes of data, culminating in a daily condensed dose of info in the petabyte range. To do this will require well over what the exascale machines of the 2020 timeframe will offer but there’s another problem. The signals are being collected at the most radio wave-free locations one earth,  which happen to be places where there’s no power grid or internet.

This was the perfect set of conditions for IBM and SKA/ASTRON researchers to think outside of the power-hungry boxes that are required to feed this kind of science. And the perfect opportunity for an ultra low-power approach that recognizes that the compute is easy–it’s the data movement that’s the real power drain. Since altering the speed of light is out of the question, the only answer seems to be integrating as much as possible into a neat whole. While some of that technology still needs to mature (particularly in areas like stacked memory), Luitjen was able to demonstrate how big compute and little movement can be lashed together for maximum efficiency and multiple workloads.

But this isn’t all in the name of grand science. In addition to seeing a path to helping SKA with its noble mission, IBM too was able to see a path to meeting the “compute is free but data is not” paradigm. Luijten says their needs were specific; they wanted to see a microserver that could provide an ultra low-power “datacenter in a box” that could leverage commodity parts and condensed packaging. Further, it would have to be true 64-bit to be of commercial value (which meant no ARM since it wasn’t on the near horizon then), and would have to run a server-class operating system.

Building off the lesson learned during his Sheeva Plug jaunt, Luijten set to work with the one and only 64-bit chip on the market. In this case, it was the P5020 chip from Freescale—a product made specifically for the embedded market, thus without any of the software required for doing anything other than powering small devices operating on custom code. He says the Linux that came in the box was limited and he couldn’t even run the compiler. There was certainly no OS to meet IBM’s eventual needs, but with the help of a colleague and folks at Freescale, Luijten was able to get Fedora up and running on the 2.0 GHz Power-based architecture. And so the DOME Microserver was born.

fedora_bootGetting Fedora to sing on the DOME was one the first hurdle; the absence of an ecosystem was an incredible challenge and multiple iterations of attempting the use of different OS approaches that blended server and embedded realms. He imagined that finally being able to implement a functional server-class OS would be half of the trouble–that the real challenges were ahead in being able to build some functionality application-wise around that.

However, to Luijten’s surprise, just two days after the Fedora success, they were able to get IBM’s DB2 up and running on the tiny motherboard. Without compiling. This is indeed the same DB2 that requires ultra-pricey System X datacenters at a much greater up-front and of course, operational/power cost.

Luijten relayed a quick story about how he had a chat with upper management on the development side at IBM about what they were able to do and he flat-out denied it was possible. “He probably still doesn’t believe it to this day,” he laughed. But sure enough, he said, they had a program that was running for weeks on a single node end atop DB2 with a PHP app on a web browser that could kick through a basket of workloads on the Freescale-carried DB2 engine, all at around 55 watts.

DOMEThe very small team (just Luijten, another comrade and a group of researchers at Freescale) grabbed the chance to take hold of the new incarnation of the chip, which moved them from dual-core to 12 cores—a major leap that didn’t require a recompile to run DB2 again. The newest part, the T4240 runs at 60 watts but comes with some major enhancements to his aims in terms of threading (this is “true threading” he says, not hyperthreading), bumps to three memory channels, and moves them down to 28nm (versus 45 nm).

comparison_slide

The datacenter in a box approach with 128 of these boards using the newest chip yields 1536 cores and 3072 threads with between 3 or 6 TB of DRAM with a novel hot water cooling (ala SuperMUC) installation makes this a rather compelling idea for cloud datacenters and of course, for power-aware, poor folks who want to their commercial or research applications to run in a lightweight, cheap way. As for HPC, it’s all about potential and possibilities at this point versus anything practical. Again, this is a proof of concept project. Benchmark results and scaling capabilities will be forthcoming, but for anyone who wants a firsthand lesson in some of the lessons of a non-existent software ecosystem, the ARM guys aren’t the only ones to look to for war stories.

Just as a side note, while sitting with Luijten at the IDC User Forum this week, we set the little server node motherboard next to my iPhone—it was just a tad longer, do some mental comparisons for size scale or take a look below at his part versus a BlueGene board. Sitting this next to a Calexda or Moonshot offers about the same viewing experience.

comparison_shmarison

Microservers should package the entire server node motherboard into a single microchip, leaving off some elements that wouldn’t make sense (including DRAM, power conversion logic and NOR Flash since they don’t fit), says Luijten. There are many motherboards that have graphics and such, but this is pared down.

And yes, this was from a conversation at an HPC-centric event, which might strike some of you as a bit strange. Luijten says that he definitely does not do HPC but Earl Joseph believes strongly that the DOME microserver project is a perfect example of the type of technology that could be disruptive to the industry going forward. It’s power constrained, price-aware, and performance-oriented. While the specs on the flops front are in short order (you can do some quick math based on what Freescale has made available—not shabby for the size and power envelope), Joseph is spot-on. This was one of the more compelling presentations during the two days in Santa Fe and based on sideline conversations, one of the most widely-discussed.

It should be noted that these aren’t coming to a rack near you anytime soon. It’s still a research project, but it’s one that Freescale isn’t taking lightly, even if it’s not been as mainstream at IBM as Luijten might like to see one day. This would make a pretty compelling cloud server for Freescale and they’re working with him now to run some benchmarks to get a better baseline on the performance capabilities that will be shared in a press release eventually.

What IBM will do with the eventual success or interest in the concept on the development side remains anyone’s best guess—especially as the first drums of the ARM invasion can be heard beating in the not-so-far distance. “IBM sold off its SystemX business is because the moment a technology becomes commodity, they get out of the game,” Luijten  reflected. They can’t sustain a business on driving a commodity market, hence they’re looking now to things like cognitive computing, among other efforts.

He says that while IBM is not incredibly interested in what he’s working on now, at least in any serious product-driven way, he’s found that with research like this, it helps to be more than just a good technical engineer. “Someone said I’m like an entrepreneur,” he laughed. “It’s not enough to develop this technology, it has to be marketed and you have to find interest however you can.”

We’ll close with the most recent development/progress via one of his slides. And of course, we’ll continue to watch this, even if it’s remote from the HPC we’re looking at now.

status_slide

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

SC21’s Student Cluster Competition Winners Announced

November 19, 2021

SC21 may have been the first major supercomputing conference to return to in-person activities, but not everything returned to the live menu: the Student Cluster Competition – held virtually at ISC 2020, SC20 and ISC 2021 – was again held virtually at SC21. Nevertheless, Students@SC Chair Jay Lofstead took the physical stage at SC21 on Thursday to announce the... Read more…

MLPerf Issues HPC 1.0 Benchmark Results Featuring Impressive Systems (Think Fugaku)

November 19, 2021

Earlier this week MLCommons issued results from its latest MLPerf HPC training benchmarking exercise. Unlike other MLPerf benchmarks, which mostly measure the training and inference performance of systems that are availa Read more…

AWS Solution Channel

Royalty-free stock illustration ID: 1616974732

Using the Slurm REST API to integrate with distributed architectures on AWS

The Slurm Workload Manager by SchedMD is a popular HPC scheduler and is supported by AWS ParallelCluster, an elastic HPC cluster management service offered by AWS. Read more…

Gordon Bell Special Prize Goes to World-Shaping COVID Droplet Work

November 18, 2021

For the second (and, hopefully, final) year in a row, SC21 included a second major research award alongside the ACM 2021 Gordon Bell Prize: the Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research. Last year, the first iteration of this award went to simulations of the SARS-CoV-2 spike protein; this year, the prize went... Read more…

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

SC21’s Student Cluster Competition Winners Announced

November 19, 2021

SC21 may have been the first major supercomputing conference to return to in-person activities, but not everything returned to the live menu: the Student Cluster Competition – held virtually at ISC 2020, SC20 and ISC 2021 – was again held virtually at SC21. Nevertheless, Students@SC Chair Jay Lofstead took the physical stage at SC21 on Thursday to announce the... Read more…

MLPerf Issues HPC 1.0 Benchmark Results Featuring Impressive Systems (Think Fugaku)

November 19, 2021

Earlier this week MLCommons issued results from its latest MLPerf HPC training benchmarking exercise. Unlike other MLPerf benchmarks, which mostly measure the t Read more…

Gordon Bell Special Prize Goes to World-Shaping COVID Droplet Work

November 18, 2021

For the second (and, hopefully, final) year in a row, SC21 included a second major research award alongside the ACM 2021 Gordon Bell Prize: the Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research. Last year, the first iteration of this award went to simulations of the SARS-CoV-2 spike protein; this year, the prize went... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

SC21 Keynote: Internet Pioneer Vint Cerf on Shakespeare, Chatbots, and Being Human

November 17, 2021

Unlike the deep technical dives of many SC keynotes, Internet pioneer Vint Cerf steered clear of the trenches and took leisurely stroll through a range of human-machine interactions, touching on ML’s growing capabilities while noting potholes to be avoided if possible. Cerf, of course, is co-designer with Bob Kahn of the TCP/IP protocols and architecture of the internet. He’s heralded... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire