Why Iterative Innovation is the Only Path to Exascale

By Nicole Hemsoth

April 14, 2014

If we’re out of “magic bullets” that can shoot across supercomputing space, shattering assumptions about how high performance computing operates efficiently at massive scale, we’re left with one option…refine and tweak that which exists, while pushing as much funding as possible toward the blue sky above with the hopes that another disruptive technology will emerge.

Few others have the insight about this paradigm that Buddy Bland possesses. As director of Oak Ridge National Lab’s Leadership Computing Facility and former lead on a number of large-scale system projects, Bland has developed a keen sense of what is required of the supercomputers of the future—including those that will be part of the CORAL triad of pre-exascale systems. He has seen the so-called magic bullets pop off in the past, which yielded big gains in performance and power (outfitting with Jaguar with GPUs for the Titan refresh, for instance). But from what he sees from on high at this point, the exascale vision needs a long string of constant, cumulative tweaks in the absence of some looming “great distruptor” for HPC.

The CORAL program is a collaborative effort between Oak Ridge, Argonne and Lawrence Livermore labs, which will deliver pre-exascale class computing for Department of Energy and National Nuclear Security Administration needs by the 2017-2018 timeframe. There will be more information about the planned capability, vendor, and architecture within the next month when details are formally released. The decisions around the third site, which will be at Oak Ridge National Lab, have been keeping Bland busy. His team at Oak Ridge is nearing the signing of a contract and expect to be able to share more about the anticipated system by the end of this year.

In addition to navigating vendor capability to deliver the capacity and power requirements of the various vendors who submitted their offerings, Bland has had to look back at a number of successful systems to see why they were solid resources—and why certain approaches to efficient, high performance computing fail to deliver. From Titan, Sequoia, and Mira—and the many systems before these, Bland says he’s seen enough to understand that making exascale computing practical requires some serious investment in two key areas–reliability and power. This is not a surprise in itself, but the way Bland ties this into some finer points around the needs for more robust hardware and software that can automatically adjust to added complexity is worth sharing.

“Over the years as these machines have grown larger, the complexity of keeping them up and running and usable to use on a single application over a long period of time has become more of a problem,” said Bland. “We see nodes fail every couple of days,” he told us. “We expect that with the CORAL machines, since there will be even more parts, there will even more failures, so we’re working with the vendors to help us with that and we’re also looking to software that can help us get around those failures. We need to find ways to help applications stay up and run for even longer periods of time without failing.”

As it stands, the process of recovering from node failure at a large supercomputing site hasn’t developed much over the years. A good bit of is a manual, and all of it contributes to expense for both the center and the people who help get the application ship back on course. For even a basic cluster, node failure is a problem—but when the average job running on Titan is taking up around 60,000 cores at minimum, the value of having a way to mitigate downtime is essential. Aside from those direct costs, scientists simply want their results, not the burden of smacking around new nodes and reviving from a checkpoint (if they were lucky enough to have one).

“What’s really needed is full automation of the recovery process,” says Bland. He explained that these issues around recovery have been addressed already by a number of scheduling packages, but none of them have managed to mesh together what’s needed into a comprehensive package that allows touch-free recovery.

As an interesting side note, this capability to auto-roll after a rock hits the works is something that the largest datacenters in the world have built into their operations (think more in terms of Google, Facebook and the like rather than large scientific computing hubs) but for HPC sites, this remains a big challenge for the hardware vendors and those making schedulers as well. Ah, but that’s a different world, right? Certainly there could be no relevance to U.S. government lab supercomputing centers….Ahem. So, moving on…

If recovery and power are two of the major issues that HPC centers need to address in this era of pre-exascale systems, there seems to be burgeoning answer that speaks to both matters. Cut down on the movement of data by moving as much as possible onto the same chip. This not only wicks away the big energy drain, which is that very movement, but it also means fewer components, thus a lessened chance of failing parts. Bland says that the model, which has played out in the Blue Gene systems, has proven itself to some degree. However, despite any success there the future of that line of IBM machines for supercomputing is in question—but that’s another article.

Bland points to other innovations that have improved power consumption specifically, which is through the addition of GPUs. He said despite a 10-fold improvement in computing power, upgrading Titan with new processors and GPUs from its plain vanilla CPU-only Jaguar roots, the system consumed quite a bit less power (going from around 7 megawatts to 5). This was a remarkable improvement, he said, but it was just a one-time innovation. “You can’t tackle all these problems around reliability and power without looking at every single one of the things that consumes power or leads to failure. We had GPUs and that helped, but that’s not enough. There must be more innovation for all layers the stack.”

Innovations in areas that don’t get quite as much attention are all going to be the small developments that add to more efficient exascale computing. There is no one solution—no magic bullet, says Bland. He pointed to the example of power supplies as representative of the “little things” that can be worked on in the near term. “Right now we have power supplies that are around 92 percent efficient in converting AC to DC. That’s 8% we’re leaving on the floor—we need to find one that’s 99% efficient. It’s these pieces, these small details in how we’re spending small amounts of energy that are really going to make the difference.”

There are a few other considerations that found their way from experience into the RFP process for the new CORAL systems, including the choices among particular architectures. What’s most surprising, says Bland, is how little these architectural considerations matter against the sheer process of exposing parallelism in the codes set to run on the future fastest systems. “You can’t just throw a code to the compiler—you as a human actually have to go in and expose that parallelism then let the compilers handle the architectural details.” He says that it’s a matter of writing applications in a way that can bring massive parallel capability to light versus expecting the architectural decisions to unfold in a way that automatically yields ultra high performance.

Compute, code and energy issues aren’t the only problems Bland’s team is thinking about for the next generation of large-scale systems. For instance, there’s also a broader concern around I/O that will become far more pressing going forward. It’s hard enough to think about building archives in the current generation of supercomputers, and just as difficult to get enough bandwidth since most of what centers are using is built for capacity. Here’s where another “small innovation” that can yield larger gains via burst buffers. We’ve written about these before—there’s a cache layer in front of the archive that allows “bursting” of the data into slower devices, which is great for this type of traffic. As Bland said, this smaller but important innovation is good as a “stop gap” for now, but more work is needed to handle streaming traffic at high bandwidth, which will be an even bigger problem as system sizes and the data they generate grows.

Codes aside, he said, at the end of the day, the one thing that will determine the feasibility of exascale computing will be power. And while there is promise in the research being done in the FastForward and DesignForward programs, it’s about refining. He said he’s not expecting that there will be one major disruptive technology that will turn supercomputing on its head in the near term—it’s about innovations across the board that will be small individually but will contribute to a much richer set of capabilities that centers can actually afford to host.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Glimpses of Today’s Total Solar Eclipse

August 21, 2017

Here are a few arresting images posted by NASA of today’s total solar eclipse. Such astronomical events have always captured our imagination and it’s not hard to understand why such occurrences were often greeted wit Read more…

By John Russell

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement on at least one thing: the power consumption and latency pen Read more…

By Doug Black

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This