Why Iterative Innovation is the Only Path to Exascale

By Nicole Hemsoth

April 14, 2014

If we’re out of “magic bullets” that can shoot across supercomputing space, shattering assumptions about how high performance computing operates efficiently at massive scale, we’re left with one option…refine and tweak that which exists, while pushing as much funding as possible toward the blue sky above with the hopes that another disruptive technology will emerge.

Few others have the insight about this paradigm that Buddy Bland possesses. As director of Oak Ridge National Lab’s Leadership Computing Facility and former lead on a number of large-scale system projects, Bland has developed a keen sense of what is required of the supercomputers of the future—including those that will be part of the CORAL triad of pre-exascale systems. He has seen the so-called magic bullets pop off in the past, which yielded big gains in performance and power (outfitting with Jaguar with GPUs for the Titan refresh, for instance). But from what he sees from on high at this point, the exascale vision needs a long string of constant, cumulative tweaks in the absence of some looming “great distruptor” for HPC.

The CORAL program is a collaborative effort between Oak Ridge, Argonne and Lawrence Livermore labs, which will deliver pre-exascale class computing for Department of Energy and National Nuclear Security Administration needs by the 2017-2018 timeframe. There will be more information about the planned capability, vendor, and architecture within the next month when details are formally released. The decisions around the third site, which will be at Oak Ridge National Lab, have been keeping Bland busy. His team at Oak Ridge is nearing the signing of a contract and expect to be able to share more about the anticipated system by the end of this year.

In addition to navigating vendor capability to deliver the capacity and power requirements of the various vendors who submitted their offerings, Bland has had to look back at a number of successful systems to see why they were solid resources—and why certain approaches to efficient, high performance computing fail to deliver. From Titan, Sequoia, and Mira—and the many systems before these, Bland says he’s seen enough to understand that making exascale computing practical requires some serious investment in two key areas–reliability and power. This is not a surprise in itself, but the way Bland ties this into some finer points around the needs for more robust hardware and software that can automatically adjust to added complexity is worth sharing.

“Over the years as these machines have grown larger, the complexity of keeping them up and running and usable to use on a single application over a long period of time has become more of a problem,” said Bland. “We see nodes fail every couple of days,” he told us. “We expect that with the CORAL machines, since there will be even more parts, there will even more failures, so we’re working with the vendors to help us with that and we’re also looking to software that can help us get around those failures. We need to find ways to help applications stay up and run for even longer periods of time without failing.”

As it stands, the process of recovering from node failure at a large supercomputing site hasn’t developed much over the years. A good bit of is a manual, and all of it contributes to expense for both the center and the people who help get the application ship back on course. For even a basic cluster, node failure is a problem—but when the average job running on Titan is taking up around 60,000 cores at minimum, the value of having a way to mitigate downtime is essential. Aside from those direct costs, scientists simply want their results, not the burden of smacking around new nodes and reviving from a checkpoint (if they were lucky enough to have one).

“What’s really needed is full automation of the recovery process,” says Bland. He explained that these issues around recovery have been addressed already by a number of scheduling packages, but none of them have managed to mesh together what’s needed into a comprehensive package that allows touch-free recovery.

As an interesting side note, this capability to auto-roll after a rock hits the works is something that the largest datacenters in the world have built into their operations (think more in terms of Google, Facebook and the like rather than large scientific computing hubs) but for HPC sites, this remains a big challenge for the hardware vendors and those making schedulers as well. Ah, but that’s a different world, right? Certainly there could be no relevance to U.S. government lab supercomputing centers….Ahem. So, moving on…

If recovery and power are two of the major issues that HPC centers need to address in this era of pre-exascale systems, there seems to be burgeoning answer that speaks to both matters. Cut down on the movement of data by moving as much as possible onto the same chip. This not only wicks away the big energy drain, which is that very movement, but it also means fewer components, thus a lessened chance of failing parts. Bland says that the model, which has played out in the Blue Gene systems, has proven itself to some degree. However, despite any success there the future of that line of IBM machines for supercomputing is in question—but that’s another article.

Bland points to other innovations that have improved power consumption specifically, which is through the addition of GPUs. He said despite a 10-fold improvement in computing power, upgrading Titan with new processors and GPUs from its plain vanilla CPU-only Jaguar roots, the system consumed quite a bit less power (going from around 7 megawatts to 5). This was a remarkable improvement, he said, but it was just a one-time innovation. “You can’t tackle all these problems around reliability and power without looking at every single one of the things that consumes power or leads to failure. We had GPUs and that helped, but that’s not enough. There must be more innovation for all layers the stack.”

Innovations in areas that don’t get quite as much attention are all going to be the small developments that add to more efficient exascale computing. There is no one solution—no magic bullet, says Bland. He pointed to the example of power supplies as representative of the “little things” that can be worked on in the near term. “Right now we have power supplies that are around 92 percent efficient in converting AC to DC. That’s 8% we’re leaving on the floor—we need to find one that’s 99% efficient. It’s these pieces, these small details in how we’re spending small amounts of energy that are really going to make the difference.”

There are a few other considerations that found their way from experience into the RFP process for the new CORAL systems, including the choices among particular architectures. What’s most surprising, says Bland, is how little these architectural considerations matter against the sheer process of exposing parallelism in the codes set to run on the future fastest systems. “You can’t just throw a code to the compiler—you as a human actually have to go in and expose that parallelism then let the compilers handle the architectural details.” He says that it’s a matter of writing applications in a way that can bring massive parallel capability to light versus expecting the architectural decisions to unfold in a way that automatically yields ultra high performance.

Compute, code and energy issues aren’t the only problems Bland’s team is thinking about for the next generation of large-scale systems. For instance, there’s also a broader concern around I/O that will become far more pressing going forward. It’s hard enough to think about building archives in the current generation of supercomputers, and just as difficult to get enough bandwidth since most of what centers are using is built for capacity. Here’s where another “small innovation” that can yield larger gains via burst buffers. We’ve written about these before—there’s a cache layer in front of the archive that allows “bursting” of the data into slower devices, which is great for this type of traffic. As Bland said, this smaller but important innovation is good as a “stop gap” for now, but more work is needed to handle streaming traffic at high bandwidth, which will be an even bigger problem as system sizes and the data they generate grows.

Codes aside, he said, at the end of the day, the one thing that will determine the feasibility of exascale computing will be power. And while there is promise in the research being done in the FastForward and DesignForward programs, it’s about refining. He said he’s not expecting that there will be one major disruptive technology that will turn supercomputing on its head in the near term—it’s about innovations across the board that will be small individually but will contribute to a much richer set of capabilities that centers can actually afford to host.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This