Why Iterative Innovation is the Only Path to Exascale

By Nicole Hemsoth

April 14, 2014

If we’re out of “magic bullets” that can shoot across supercomputing space, shattering assumptions about how high performance computing operates efficiently at massive scale, we’re left with one option…refine and tweak that which exists, while pushing as much funding as possible toward the blue sky above with the hopes that another disruptive technology will emerge.

Few others have the insight about this paradigm that Buddy Bland possesses. As director of Oak Ridge National Lab’s Leadership Computing Facility and former lead on a number of large-scale system projects, Bland has developed a keen sense of what is required of the supercomputers of the future—including those that will be part of the CORAL triad of pre-exascale systems. He has seen the so-called magic bullets pop off in the past, which yielded big gains in performance and power (outfitting with Jaguar with GPUs for the Titan refresh, for instance). But from what he sees from on high at this point, the exascale vision needs a long string of constant, cumulative tweaks in the absence of some looming “great distruptor” for HPC.

The CORAL program is a collaborative effort between Oak Ridge, Argonne and Lawrence Livermore labs, which will deliver pre-exascale class computing for Department of Energy and National Nuclear Security Administration needs by the 2017-2018 timeframe. There will be more information about the planned capability, vendor, and architecture within the next month when details are formally released. The decisions around the third site, which will be at Oak Ridge National Lab, have been keeping Bland busy. His team at Oak Ridge is nearing the signing of a contract and expect to be able to share more about the anticipated system by the end of this year.

In addition to navigating vendor capability to deliver the capacity and power requirements of the various vendors who submitted their offerings, Bland has had to look back at a number of successful systems to see why they were solid resources—and why certain approaches to efficient, high performance computing fail to deliver. From Titan, Sequoia, and Mira—and the many systems before these, Bland says he’s seen enough to understand that making exascale computing practical requires some serious investment in two key areas–reliability and power. This is not a surprise in itself, but the way Bland ties this into some finer points around the needs for more robust hardware and software that can automatically adjust to added complexity is worth sharing.

“Over the years as these machines have grown larger, the complexity of keeping them up and running and usable to use on a single application over a long period of time has become more of a problem,” said Bland. “We see nodes fail every couple of days,” he told us. “We expect that with the CORAL machines, since there will be even more parts, there will even more failures, so we’re working with the vendors to help us with that and we’re also looking to software that can help us get around those failures. We need to find ways to help applications stay up and run for even longer periods of time without failing.”

As it stands, the process of recovering from node failure at a large supercomputing site hasn’t developed much over the years. A good bit of is a manual, and all of it contributes to expense for both the center and the people who help get the application ship back on course. For even a basic cluster, node failure is a problem—but when the average job running on Titan is taking up around 60,000 cores at minimum, the value of having a way to mitigate downtime is essential. Aside from those direct costs, scientists simply want their results, not the burden of smacking around new nodes and reviving from a checkpoint (if they were lucky enough to have one).

“What’s really needed is full automation of the recovery process,” says Bland. He explained that these issues around recovery have been addressed already by a number of scheduling packages, but none of them have managed to mesh together what’s needed into a comprehensive package that allows touch-free recovery.

As an interesting side note, this capability to auto-roll after a rock hits the works is something that the largest datacenters in the world have built into their operations (think more in terms of Google, Facebook and the like rather than large scientific computing hubs) but for HPC sites, this remains a big challenge for the hardware vendors and those making schedulers as well. Ah, but that’s a different world, right? Certainly there could be no relevance to U.S. government lab supercomputing centers….Ahem. So, moving on…

If recovery and power are two of the major issues that HPC centers need to address in this era of pre-exascale systems, there seems to be burgeoning answer that speaks to both matters. Cut down on the movement of data by moving as much as possible onto the same chip. This not only wicks away the big energy drain, which is that very movement, but it also means fewer components, thus a lessened chance of failing parts. Bland says that the model, which has played out in the Blue Gene systems, has proven itself to some degree. However, despite any success there the future of that line of IBM machines for supercomputing is in question—but that’s another article.

Bland points to other innovations that have improved power consumption specifically, which is through the addition of GPUs. He said despite a 10-fold improvement in computing power, upgrading Titan with new processors and GPUs from its plain vanilla CPU-only Jaguar roots, the system consumed quite a bit less power (going from around 7 megawatts to 5). This was a remarkable improvement, he said, but it was just a one-time innovation. “You can’t tackle all these problems around reliability and power without looking at every single one of the things that consumes power or leads to failure. We had GPUs and that helped, but that’s not enough. There must be more innovation for all layers the stack.”

Innovations in areas that don’t get quite as much attention are all going to be the small developments that add to more efficient exascale computing. There is no one solution—no magic bullet, says Bland. He pointed to the example of power supplies as representative of the “little things” that can be worked on in the near term. “Right now we have power supplies that are around 92 percent efficient in converting AC to DC. That’s 8% we’re leaving on the floor—we need to find one that’s 99% efficient. It’s these pieces, these small details in how we’re spending small amounts of energy that are really going to make the difference.”

There are a few other considerations that found their way from experience into the RFP process for the new CORAL systems, including the choices among particular architectures. What’s most surprising, says Bland, is how little these architectural considerations matter against the sheer process of exposing parallelism in the codes set to run on the future fastest systems. “You can’t just throw a code to the compiler—you as a human actually have to go in and expose that parallelism then let the compilers handle the architectural details.” He says that it’s a matter of writing applications in a way that can bring massive parallel capability to light versus expecting the architectural decisions to unfold in a way that automatically yields ultra high performance.

Compute, code and energy issues aren’t the only problems Bland’s team is thinking about for the next generation of large-scale systems. For instance, there’s also a broader concern around I/O that will become far more pressing going forward. It’s hard enough to think about building archives in the current generation of supercomputers, and just as difficult to get enough bandwidth since most of what centers are using is built for capacity. Here’s where another “small innovation” that can yield larger gains via burst buffers. We’ve written about these before—there’s a cache layer in front of the archive that allows “bursting” of the data into slower devices, which is great for this type of traffic. As Bland said, this smaller but important innovation is good as a “stop gap” for now, but more work is needed to handle streaming traffic at high bandwidth, which will be an even bigger problem as system sizes and the data they generate grows.

Codes aside, he said, at the end of the day, the one thing that will determine the feasibility of exascale computing will be power. And while there is promise in the research being done in the FastForward and DesignForward programs, it’s about refining. He said he’s not expecting that there will be one major disruptive technology that will turn supercomputing on its head in the near term—it’s about innovations across the board that will be small individually but will contribute to a much richer set of capabilities that centers can actually afford to host.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

NSF Issues $60M RFP for “Towards a Leadership-Class” System

May 16, 2017

In case you missed it, the National Science Foundation issued the request for proposals (RFP) for the next ‘Towards a Leadership-Class Computing Facility – Read more…

By John Russell

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Microsoft Azure Will Debut Pascal GPU Instances This Year

May 8, 2017

As Nvidia's GPU Technology Conference gets underway in San Jose, Calif., Microsoft today revealed plans to add Pascal-generation GPU horsepower to its Azure clo Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn't made the task of parallel progr Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This