Why Iterative Innovation is the Only Path to Exascale

By Nicole Hemsoth

April 14, 2014

If we’re out of “magic bullets” that can shoot across supercomputing space, shattering assumptions about how high performance computing operates efficiently at massive scale, we’re left with one option…refine and tweak that which exists, while pushing as much funding as possible toward the blue sky above with the hopes that another disruptive technology will emerge.

Few others have the insight about this paradigm that Buddy Bland possesses. As director of Oak Ridge National Lab’s Leadership Computing Facility and former lead on a number of large-scale system projects, Bland has developed a keen sense of what is required of the supercomputers of the future—including those that will be part of the CORAL triad of pre-exascale systems. He has seen the so-called magic bullets pop off in the past, which yielded big gains in performance and power (outfitting with Jaguar with GPUs for the Titan refresh, for instance). But from what he sees from on high at this point, the exascale vision needs a long string of constant, cumulative tweaks in the absence of some looming “great distruptor” for HPC.

The CORAL program is a collaborative effort between Oak Ridge, Argonne and Lawrence Livermore labs, which will deliver pre-exascale class computing for Department of Energy and National Nuclear Security Administration needs by the 2017-2018 timeframe. There will be more information about the planned capability, vendor, and architecture within the next month when details are formally released. The decisions around the third site, which will be at Oak Ridge National Lab, have been keeping Bland busy. His team at Oak Ridge is nearing the signing of a contract and expect to be able to share more about the anticipated system by the end of this year.

In addition to navigating vendor capability to deliver the capacity and power requirements of the various vendors who submitted their offerings, Bland has had to look back at a number of successful systems to see why they were solid resources—and why certain approaches to efficient, high performance computing fail to deliver. From Titan, Sequoia, and Mira—and the many systems before these, Bland says he’s seen enough to understand that making exascale computing practical requires some serious investment in two key areas–reliability and power. This is not a surprise in itself, but the way Bland ties this into some finer points around the needs for more robust hardware and software that can automatically adjust to added complexity is worth sharing.

“Over the years as these machines have grown larger, the complexity of keeping them up and running and usable to use on a single application over a long period of time has become more of a problem,” said Bland. “We see nodes fail every couple of days,” he told us. “We expect that with the CORAL machines, since there will be even more parts, there will even more failures, so we’re working with the vendors to help us with that and we’re also looking to software that can help us get around those failures. We need to find ways to help applications stay up and run for even longer periods of time without failing.”

As it stands, the process of recovering from node failure at a large supercomputing site hasn’t developed much over the years. A good bit of is a manual, and all of it contributes to expense for both the center and the people who help get the application ship back on course. For even a basic cluster, node failure is a problem—but when the average job running on Titan is taking up around 60,000 cores at minimum, the value of having a way to mitigate downtime is essential. Aside from those direct costs, scientists simply want their results, not the burden of smacking around new nodes and reviving from a checkpoint (if they were lucky enough to have one).

“What’s really needed is full automation of the recovery process,” says Bland. He explained that these issues around recovery have been addressed already by a number of scheduling packages, but none of them have managed to mesh together what’s needed into a comprehensive package that allows touch-free recovery.

As an interesting side note, this capability to auto-roll after a rock hits the works is something that the largest datacenters in the world have built into their operations (think more in terms of Google, Facebook and the like rather than large scientific computing hubs) but for HPC sites, this remains a big challenge for the hardware vendors and those making schedulers as well. Ah, but that’s a different world, right? Certainly there could be no relevance to U.S. government lab supercomputing centers….Ahem. So, moving on…

If recovery and power are two of the major issues that HPC centers need to address in this era of pre-exascale systems, there seems to be burgeoning answer that speaks to both matters. Cut down on the movement of data by moving as much as possible onto the same chip. This not only wicks away the big energy drain, which is that very movement, but it also means fewer components, thus a lessened chance of failing parts. Bland says that the model, which has played out in the Blue Gene systems, has proven itself to some degree. However, despite any success there the future of that line of IBM machines for supercomputing is in question—but that’s another article.

Bland points to other innovations that have improved power consumption specifically, which is through the addition of GPUs. He said despite a 10-fold improvement in computing power, upgrading Titan with new processors and GPUs from its plain vanilla CPU-only Jaguar roots, the system consumed quite a bit less power (going from around 7 megawatts to 5). This was a remarkable improvement, he said, but it was just a one-time innovation. “You can’t tackle all these problems around reliability and power without looking at every single one of the things that consumes power or leads to failure. We had GPUs and that helped, but that’s not enough. There must be more innovation for all layers the stack.”

Innovations in areas that don’t get quite as much attention are all going to be the small developments that add to more efficient exascale computing. There is no one solution—no magic bullet, says Bland. He pointed to the example of power supplies as representative of the “little things” that can be worked on in the near term. “Right now we have power supplies that are around 92 percent efficient in converting AC to DC. That’s 8% we’re leaving on the floor—we need to find one that’s 99% efficient. It’s these pieces, these small details in how we’re spending small amounts of energy that are really going to make the difference.”

There are a few other considerations that found their way from experience into the RFP process for the new CORAL systems, including the choices among particular architectures. What’s most surprising, says Bland, is how little these architectural considerations matter against the sheer process of exposing parallelism in the codes set to run on the future fastest systems. “You can’t just throw a code to the compiler—you as a human actually have to go in and expose that parallelism then let the compilers handle the architectural details.” He says that it’s a matter of writing applications in a way that can bring massive parallel capability to light versus expecting the architectural decisions to unfold in a way that automatically yields ultra high performance.

Compute, code and energy issues aren’t the only problems Bland’s team is thinking about for the next generation of large-scale systems. For instance, there’s also a broader concern around I/O that will become far more pressing going forward. It’s hard enough to think about building archives in the current generation of supercomputers, and just as difficult to get enough bandwidth since most of what centers are using is built for capacity. Here’s where another “small innovation” that can yield larger gains via burst buffers. We’ve written about these before—there’s a cache layer in front of the archive that allows “bursting” of the data into slower devices, which is great for this type of traffic. As Bland said, this smaller but important innovation is good as a “stop gap” for now, but more work is needed to handle streaming traffic at high bandwidth, which will be an even bigger problem as system sizes and the data they generate grows.

Codes aside, he said, at the end of the day, the one thing that will determine the feasibility of exascale computing will be power. And while there is promise in the research being done in the FastForward and DesignForward programs, it’s about refining. He said he’s not expecting that there will be one major disruptive technology that will turn supercomputing on its head in the near term—it’s about innovations across the board that will be small individually but will contribute to a much richer set of capabilities that centers can actually afford to host.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GDPR’s Impact on Scientific Research Uncertain

May 24, 2018

Amid the angst over preparations—or lack thereof—for new European Union data protections entering into force at week’s end is the equally worrisome issue of the rules’ impact on scientific research. Among the Read more…

By George Leopold

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Francisco, one would be tempted to dismiss its claims of inventing Read more…

By John Russell

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been emerging from stealth over the last year and a half, is unveili Read more…

By Tiffany Trader

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been eme Read more…

By Tiffany Trader

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This