3D Tsunami Simulator Boosts Japan’s Emergency Preparedness

By Tiffany Trader

April 17, 2014

A partnership between Fujitsu and Tohoku University has paid off in the form of a precise tsunami forecasting system that will help make Japan more resilient to disasters, such as the Great East Japan Earthquake of March 11, 2011, and the resulting tsunami that devastated the island nation.

A collaboration between Fujitsu Limited and Tohoku University that began in 2012 has resulted in a 3D tsunami simulator that can reproduce details such as the push of water into urban areas as well as potential river surges that could be caused by a tsunami.

The joint research project combines a 2D tsunami-propagation simulation technology developed by Professor Fumihiko Imamura, director of the International Research Institute of Disaster Science in Tohoku University, with Fujitsu’s 3D fluid simulation technology. As a result, researchers connected to the project can accurately replicate the complex changes a tsunami goes through as it interacts with coastal topography or buildings in urban areas.

The plan is to apply the simulator toward composite disaster forecasting of a tsunami caused by a major earthquake. To enable this strategy, the system will be brought into the Strategic Programs for Innovative Research (HPCI), which touts the powerful K supercomputer as its primary computing resource. HPCI is facilitated by MEXT, Japan’s Ministry of Education, Culture, Sports, Science and Technology. One of the themes of the program is improved tsunami forecasting techniques that would boost the country’s emergency preparedness.

Because of the tragic consequences of the 2011 disaster, Japan understands the great need to employ large-scale simulation technology to optimize building resiliency and to facilitate improved damage forecasting.

The 2D tsunami-propagation simulation technology developed by Tohoku University’s Professor Imamura is excellent for calculating the arrival time and wave height of a tsunami along coastal areas. But the program lacks the ability to simulate the water’s ingress into urban areas and rivers. Adding 3D data is challenging, but necessary to account for structures like buildings and levees which affect the tsunami’s behavior.

Fujitsu’s 3D fluid simulation technology uses a smoothed-particle hydrodynamic technique that treates fluid as a grid of particles. Thus it can model 3D behavior, like breaking waves and overflow. But going from 2D to 3D pushes computational demand significantly, espeically when the goal is to model a wide area extending from the tsunami source area to a coastal region.

Fujitsu and Tohoku University developed a new program that incorporated the data on wave height and flow velocity from the 2D tsunami-propagation simulation technology into the 3D fluid simulation technology. The result was a new 3D tsunami simulator that uses computational resources efficiently.

As the news release explains:

The action of the tsunami over the wide area extending from the hypocenter source to the coastal areas was replicated using the 2D simulation technology (figure 1 (a)), for which the computing loads are comparatively light, and the 3D fluid simulation technology was used just on the coastal regions and the urban areas, where such phenomena as wave breaks and overflow occur, enabling the 3D movements of the tsunami to be replicated within a period of time that is reasonable for practical use.

The newly devised 3D fluid simulation technology simulates the action of the tsunami in the coastal areas, which could not be done with either the 2D simulation technology or the 3D fluid simulation technology alone. With the increased simulation capability, Japanese officials hope to be able to predict the degree of damage caused by the impact force of the tsunami as it hits the shoreline.

A second benefit of having relatively light computing loads is that the time required for replication is greatly reduced, allowing mitigation efforts to more quickly assess an incoming threat.

To get a sense of the time-savings, Fujitsu explains that using only the 3D fluid simulation technology on a 10,000-node supercomputer system, it would take over 200 years to perform this kind of workload. The 3D tsunami simulator, on the other hand, is able to replicate a 0.5m radius in a tsunami traveling over approximately 10 square kilometers, which is equivalent to a typical harbor or bay, in about 160 hours on an equivalent computer.

The new simulator will be used in tandem with a variety of tsunami damage forecasting methods to create a disaster mitigation plan for western Japan. To assist the effort, Fujitsu said the company is working “to develop solutions that will support natural disaster reduction measures and be provided to the national and local governments.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in Read more…

By Tiffany Trader

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercializ Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This