What Power8 and OpenPOWER Might Mean for HPC

By Timothy Prickett Morgan

April 23, 2014

IBM is making a big play in hybrid computing, seeking to marry its POWER8 processors with various kinds of accelerators and high-speed networking and opening up its chip and system software through the OpenPOWER Foundation. At the Open Innovation Summit in San Francisco today, IBM and its foundation partners talked about how their collaboration would deliver machines better tuned for hyperscale Web applications and data analytics, but the same technologies will no doubt also be deployed in traditional supercomputing environments.

One could argue that what IBM is trying to accomplish with the OpenPOWER Foundation in an open way with many partners up and down the hardware and software stacks is based on ideas it put to the test many years ago in the “Roadrunner” petascale-class x86-Cell hybrid system at Los Alamos National Laboratory. This was the first large-scale accelerated system, and IBM seeks to make what was exotic with Roadrunner six years ago easier to do today and something more akin to normal in the years ahead.

IBM OpenPOWER Rosamilia Balog
At the Open Innovation Summit in San Francisco co-hosted by IBM and the OpenPOWER Foundation, Senior Vice President of IBM’s Systems and Technology Group Tom Rosamilia (left) and IBM General Manager of Power Systems Doug Balog (right) revealed the company’s POWER8 Systems. (Photo credit: Monica Davey/Feature Photo Service for IBM)

The POWER8 chip that was previewed today is about more than just increasing the core count by 50 percent and boosting the performance per socket on the order of 2X to 2.5X for various workloads compared to the POWER7 processors. IBM wants for all manner of accelerators to link very tightly with POWER8 processors and for scale-out clusters based on these chips to have the right kind of acceleration – be it a GPU, an FPGA, a DSP, or some other component – necessary for their particular jobs.

“The way I like to think about it is that with the POWER8 processor, we have created a superlane highway, and now we need cars driving on it,” explained Doug Balog, general manager of IBM’s Power Systems division, at the summit when announcing the new POWER8-based systems from IBM. “Very fast, very efficient vehicles. It is about that open interface that allows for that accelerator to attach to the POWER system.”

One of the interfaces that will be available to link accelerators to the POWER8 processors is IBM’s own Coherent Accelerator Processor Interface, or CAPI for short. This is an overlay on top of the PCI-Express 3.0 controllers on the POWER8 chip that will allow for high-speed linking between the CPU and accelerators and, more importantly, present a shared virtual memory space to applications across the memory attached to the CPU and any memory attached to the accelerator. Moving data back and forth between the CPU memory and the accelerator memory is a big hindrance to performance on accelerated machines, so making all memory addressable to all compute components is important.

Separately from IBM’s CAPI effort, but aligning nicely with it, NVIDIA has come up with its own NVLink interconnect, which will be used to hook its Tesla GPUs to POWER8 (and perhaps other) processors as well as to each other. Sumit Gupta, general manager of Tesla GPU Accelerated Computing Business unit at NVIDIA, said that NVLink would be incorporated into a future POWER processor design from IBM, and reminded everyone that the interconnect was part of the “Pascal” generation of GPUs from NVIDIA due in 2016 or so. NVIDIA is also going to license the technology behind NVLink to members of the OpenPOWER Foundation, Gupta said, and added that the two companies were in the meantime working on accelerating applications that combine POWER and Tesla compute. In the fourth quarter of this year, Gupta said, NVIDIA will deliver full support of its CUDA development environment for CPU-GPU hybrids on POWER processors, and in fact, IBM will also start shipping POWER8 systems that include Tesla GPU coprocessors.

“At the end of the day, the system is only as good as the software that takes advantage of it,” Gupta explained, “and that is why the future and the long-term focus is going to be around software.”

IBM is working with FPGA makers Xilinx and Altera to show the benefits of a hybrid setup running over the CAPI interface, so this is not just about GPU acceleration. Next week at the Impact2014 event, IBM and Xilinx will show a Memcached key value store application being accelerated by FPGAs and showing a factor of 35X better performance and an order of magnitude lower latency. A Monte Carlo simulation running on POWER machines accelerated by Altera FPGAs will show a factor of 200X speedup. Network adapter and switch maker Mellanox Technologies is also working with IBM to show how using Remote Direct Memory Access (RDMA) with a different key value store application boosted throughput and cut latencies by a factor of 10X.

There are a number of other benefits that come with POWER8 chips aside from high-speed links between processors and accelerators. The chips have a native little endian memory storage and accessing method, which is what x86 processors have and which stands in contrast to big endian ordering in memory. The important thing is this: with both x86 and POWER8 supporting little endian memory, applications that are coded from x86 systems to POWER8 systems are “a recompilation, a test, and a go,” as Balog put it. This is particularly important for C, C++, and Fortran and obviously has no bearing on interpreted languages like Java.

While the OpenPOWER Foundation members have not explicitly said they are seeking to accelerate traditional HPC applications, it is clear that these are core technologies that have been used – often first – in HPC systems. And there is no reason to believe that if IBM and its friends, including search engine giant Google, come up with more efficient ways of running plain vanilla POWER systems as well as hybrid machines that mix and match POWER chips and accelerators that these scale out systems will not end up in government and academic HPC centers. It will, as always, come down to having machines that suit a particular workload and at the right price. Suffice it to say that if IBM and its OpenPOWER Foundation partners can make a server that is low-cost enough to appeal to hyperscale datacenter operators, this will no doubt pique the interest of HPC centers.

In the meantime, IBM has divulged some details of the five new machines that it will sell based on the POWER8 processors. These are called the POWER Systems S-Class, and the “S” stands for scale out. Given the overwhelming adoption of Linux by the HPC community, the two Linux-only machines in the new line are probably the most appropriate, but one box that has slightly faster clock speeds might be interesting to HPC customers depending on what IBM charges for them.

The POWER S822L is a two-socket machine that fits into a 2U chassis, and it is probably the one that HPC shops will look at first. The system has room for two processor cards, which plug into the system board, and each one of them has a maximum of 512 GB of main memory. Customers can choose a POWER8 processor with ten of its twelve cores activated and running at 3.42 GHz or one with all twelve cores activated but running at only 3.02 GHz. This machine does not support cheap SATA disks, but does have room for a dozen 2.5-inch SAS drives or SSDs. It also has a storage cage with room for six 1.8-inch SSDs and has nine PCI-Express 3.0 slots. This machine will be available on June 10, and it supports Red Hat Enterprise Linux 6.5, SUSE Linux Enterprise Server 11 SP3, and Canonical Ubuntu Server 14.04 LTS. It can also run the POWERKVM hypervisor, a variant of the KVM hypervisor that IBM has created in conjunction with Red Hat and Canonical.

The POWER S812L comes with the same 2U chassis but only has one processor in it (the same options as the two-socket machine above) and only has six PCI-Express 3.0 peripheral slots. This machine will not ship until August, and will probably be less appealing to HPC shops because of its lower compute density compared to the POWER S822L.

The third machine that might see some HPC play is the POWER S822, which can run IBM’s AIX 6.1 or 7.1 operating systems or RHEL 6.5 or SLES 11 SP3. (It has not been certified to run Ubuntu Server, however.) This server can have one or two processor cards, and customers can choose between two different processors: a six-core POWER8 humming along at 3.89 GHz and a ten-core variant spinning at 3.42 GHz. Each socket in this machine supports up to 512 GB of memory, and it has six PCI slots with one processor card and nine with two processor cards.

IBM said that a base POWER Systems S-Class server would cost $7,973, but did not say what configuration or what specific system that cost was tied to. Big Blue is expected to put out pricing information on the new S-Class systems next week.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

NSF Approves Bridges Phase 2 Upgrade for Broader Research Use

January 12, 2017

The recently completed phase 2 upgrade of the Bridges supercomputer at the Pittsburgh Supercomputing Center (PSC) has been approved by the National Science Foundation (NSF) making it now available for research allocations to the national scientific community, according to an announcement posted this week on the XSEDE web site. Read more…

By John Russell

Clemson Software Optimizes Big Data Transfers

January 11, 2017

Data-intensive science is not a new phenomenon as the high-energy physics and astrophysics communities can certainly attest, but today more and more scientists are facing steep data and throughput challenges fueled by soaring data volumes and the demands of global-scale collaboration. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Fast Rewind: 2016 Was a Wild Ride for HPC

December 23, 2016

Some years quietly sneak by – 2016 not so much. It’s safe to say there are always forces reshaping the HPC landscape but this year’s bunch seemed like a noisy lot. Among the noisemakers: TaihuLight, DGX-1/Pascal, Dell EMC & HPE-SGI et al., KNL to market, OPA-IB chest thumping, Fujitsu-ARM, new U.S. President-elect, BREXIT, JR’s Intel Exit, Exascale (whatever that means now), NCSA@30, whither NSCI, Deep Learning mania, HPC identity crisis…You get the picture. Read more…

By John Russell

AWI Uses New Cray Cluster for Earth Sciences and Bioinformatics

December 22, 2016

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), headquartered in Bremerhaven, Germany, is one of the country's premier research institutes within the Helmholtz Association of German Research Centres, and is an internationally respected center of expertise for polar and marine research. In November 2015, AWI awarded Cray a contract to install a cluster supercomputer that would help the institute accelerate time to discovery. Now the effort is starting to pay off. Read more…

By Linda Barney

Addison Snell: The ‘Wild West’ of HPC Disaggregation

December 16, 2016

We caught up with Addison Snell, CEO of HPC industry watcher Intersect360, at SC16 last month, and Snell had his expected, extensive list of insights into trends driving advanced-scale technology in both the commercial and research sectors. Read more…

By Doug Black

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

New Genomics Pipeline Combines AWS, Local HPC, and Supercomputing

September 22, 2016

Declining DNA sequencing costs and the rush to do whole genome sequencing (WGS) of large cohort populations – think 5000 subjects now, but many more thousands soon – presents a formidable computational challenge to researchers attempting to make sense of large cohort datasets. Read more…

By John Russell

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This