Burst Buffers Flash Exascale Potential

By Nicole Hemsoth

May 1, 2014

For any large-scale datacenter, be it a scientific supercomputer or hyperscale web farm, the constant battles of “defensive I/O” and “offensive I/O” take their toll on overall efficiency and productivity. From checkpointing to pushing performance on long-running applications, one set of technologies is pushing its way onto the frontlines. The “burst buffer” concept, as Los Alamos National Laboratory’s Gary Grider called it five years ago, is taking aim at both dueling I/O concerns and proving itself worthy at massive scale.

Although not a new concept, the noise around burst buffers has been growing, especially at this past November’s supercomputing show where numerous vendors, from DDN, EMC, NetApp and others demonstrated their wares in the form of flashy arrays with on-board compute to handle both checkpoint and recovery in addition to boosting application performance and efficiency. The promise is multi-facted; in addition to serving as a pure storage option, these flash+compute-equipped dedicated nodes can also make storage smarter and more active—eventually to the point where this layer is built into the overall workflow in both capacity and compute terms.

“This is all based on pure economics,” Grider said. “And we predicted that all of this was coming several years ago when we did our first spreadsheet analysis that showed what was happening with bandwidth and capacity in disk drives versus flash.” The report, which can be found here, basically showed how even then, in 2009, right about now it was going to be far more economical to do checkpointing in flash then move it into disk later.

It’s worth noting that Grider was spot-on during his original economic analysis back in 2009 with where this might go. The original chart below shows the projected trajectory:

Grider1

Despite some fluctuations in flash prices, the general trend is downward, which pushes this possibility, although it’s not just about large-scale datacenters having a cheaper route to reliable checkpointing. As the team continued to investigate burst buffers to tackle reliability, it became clear how many other uses were possible with flash and compute on a dedicated set of nodes. From debugging, data analysis, throwing in dynamic load modules and more, Grider and fellow researchers began to the see the light—the full spectrum of it. Since that time, much of his career has been devoted to moving the burst buffer message forward—but not without a few caveats.

As more research is pushed toward the idea, Grider and others hope it will be even more practical to look at burst buffers for supercomputers as more than pure storage and checkpointing devices. Eventually, as his pending work on the storage-focused Exascale I/O Fast Forward program reveals, it will be possible to ship function with the data that is shuttled over to the burst buffers, meaning that all of that structure that gives deeper meaning and possibility to otherwise idle data will no longer be squelched out by the file system’s serial bit tendencies. Instead, a complex (and still immature) software paradigm will let users take advantage of the smart, active nodes of the burst buffer to handle executables while at rest between data dumps.

Grider’s graphic showing how this plays out economically (and to some degree, practically) s in one of the newest systems, Trinity, adds some real-world context to what’s needed (not to mention possible).

Grider2

While this makes sense at Trinity and future pre-exascale and exascale system levels, these same economics don’t exactly translate into the wider world. “This isn’t for everyone,” Grider said bluntly. “This is the biggest misconception, which often leads to the most questions.” He notes that while the vendor community and now, general technology masses, are being told that burst buffers can solve the world’s problems. Quite simply, unless it’s at very large scale, investing in burst buffers for general checkpointing isn’t often economically sound since far more nodes means way more failure (and many more checkpoint halts). Besides, many smaller IT shops aren’t dealing with multiple terabyte (or petabyte soon enough) dumps to make this reasonable. However, if they’re taking advantage of the active component of a smart storage approach (i.e. leveraging the compute on the nodes) it could be useful. He urged caution about this, but did note that it’s not rocket science to figure out if you’re going to benefit from it, especially for checkpointing.

Another host of questions Grider says he often encounters revolves around where burst buffers should live. His answer speaks more to what the next generation of supercomputing nodes will likely look like when the software troubles are smoothed, which will probably be flash-heavy servers that perform the same active, smart storage tasks. Currently, however, they reside in a separate set of nodes inside the supercomputer since centralizing minimizes complexity. Having more integrated flow between the flash, compute, disk, and applications is probably going to take around 5 years or more, says Grider. But again, his current research work (as well as the work of others on the programming side) is addressing some of this. In comparison to the other software challenges needed for exascale, however, he notes, solving the little burst buffer problem is nothing.

Government-funded labs are getting the I/O economics message, if nothing else. As Grider told us, this is really the first time that an RFP round has focused on anything other than compute and capacity. Storage and data movement are active parts of the discussion, which is no surprise since so much productivity is lost due to failures—and on point here, the checkpointing and dumping required to make those less painful.

“The dumps we’re doing on systems now are in the hundreds of terabytes range.  In about two years, lots of machines are going to be doing this in the 2-5 petabyte range. If you dump that even at today’s sizes, you’re talking about over an hour to dump all the memory—and this is every four hours or so. That means every four hours you’ve lost an hour or more—and ultimately, that’s 25% of the machine that’s not being used for science. That’s the real economics argument just for checkpoint,” he said.

As reported this week, the new NERSC-8 “Cori” system had an option for a burst buffer built in to explore these possibilities and the other half of the joint RFP (the Trinity system) has the same goal of pushing to 90% efficiency. Since this can’t be done by adding cores and reducing power, minimizing the impact of checkpointing while eventually taking advantage of that time between bursts by doing meaningful work on that otherwise idle data promises a significant boost.

Just as Nick Wright and Katie Antypas told us this week during the NERSC-8 system announcement (okay, “Cori”), which was the other side of this RFP (Trinity announcement expected later this year), this will very likely be a component of exascale systems going forward. There is quite a bit of software work to be done, which will decide where these live and how they interface with the file system. Meanwhile, as the next generation of Lustre is being stapled together with this in mind by Grider and many others, we await news about which vendors are pushing burst buffers forward–and what the ultimate efficiency story will be.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of computing capability in support of data analysis and AI workload Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been instrumental to AMD’s datacenter market resurgence. Nanomet Read more…

By Doug Black

Supercomputer-Powered Protein Simulations Approach Lab Accuracy

June 1, 2020

Protein simulations have dominated the supercomputing conversation of late as supercomputers around the world race to simulate the viral proteins of COVID-19 as accurately as possible and simulate potential bindings in t Read more…

By Oliver Peckham

HPC Career Notes: June 2020 Edition

June 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Supercomputer Modeling Shows How COVID-19 Spreads Through Populations

May 30, 2020

As many states begin to loosen the lockdowns and stay-at-home orders that have forced most Americans inside for the past two months, researchers are poring over the data, looking for signs of the dreaded second peak of t Read more…

By Oliver Peckham

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This