Burst Buffers Flash Exascale Potential

By Nicole Hemsoth

May 1, 2014

For any large-scale datacenter, be it a scientific supercomputer or hyperscale web farm, the constant battles of “defensive I/O” and “offensive I/O” take their toll on overall efficiency and productivity. From checkpointing to pushing performance on long-running applications, one set of technologies is pushing its way onto the frontlines. The “burst buffer” concept, as Los Alamos National Laboratory’s Gary Grider called it five years ago, is taking aim at both dueling I/O concerns and proving itself worthy at massive scale.

Although not a new concept, the noise around burst buffers has been growing, especially at this past November’s supercomputing show where numerous vendors, from DDN, EMC, NetApp and others demonstrated their wares in the form of flashy arrays with on-board compute to handle both checkpoint and recovery in addition to boosting application performance and efficiency. The promise is multi-facted; in addition to serving as a pure storage option, these flash+compute-equipped dedicated nodes can also make storage smarter and more active—eventually to the point where this layer is built into the overall workflow in both capacity and compute terms.

“This is all based on pure economics,” Grider said. “And we predicted that all of this was coming several years ago when we did our first spreadsheet analysis that showed what was happening with bandwidth and capacity in disk drives versus flash.” The report, which can be found here, basically showed how even then, in 2009, right about now it was going to be far more economical to do checkpointing in flash then move it into disk later.

It’s worth noting that Grider was spot-on during his original economic analysis back in 2009 with where this might go. The original chart below shows the projected trajectory:

Grider1

Despite some fluctuations in flash prices, the general trend is downward, which pushes this possibility, although it’s not just about large-scale datacenters having a cheaper route to reliable checkpointing. As the team continued to investigate burst buffers to tackle reliability, it became clear how many other uses were possible with flash and compute on a dedicated set of nodes. From debugging, data analysis, throwing in dynamic load modules and more, Grider and fellow researchers began to the see the light—the full spectrum of it. Since that time, much of his career has been devoted to moving the burst buffer message forward—but not without a few caveats.

As more research is pushed toward the idea, Grider and others hope it will be even more practical to look at burst buffers for supercomputers as more than pure storage and checkpointing devices. Eventually, as his pending work on the storage-focused Exascale I/O Fast Forward program reveals, it will be possible to ship function with the data that is shuttled over to the burst buffers, meaning that all of that structure that gives deeper meaning and possibility to otherwise idle data will no longer be squelched out by the file system’s serial bit tendencies. Instead, a complex (and still immature) software paradigm will let users take advantage of the smart, active nodes of the burst buffer to handle executables while at rest between data dumps.

Grider’s graphic showing how this plays out economically (and to some degree, practically) s in one of the newest systems, Trinity, adds some real-world context to what’s needed (not to mention possible).

Grider2

While this makes sense at Trinity and future pre-exascale and exascale system levels, these same economics don’t exactly translate into the wider world. “This isn’t for everyone,” Grider said bluntly. “This is the biggest misconception, which often leads to the most questions.” He notes that while the vendor community and now, general technology masses, are being told that burst buffers can solve the world’s problems. Quite simply, unless it’s at very large scale, investing in burst buffers for general checkpointing isn’t often economically sound since far more nodes means way more failure (and many more checkpoint halts). Besides, many smaller IT shops aren’t dealing with multiple terabyte (or petabyte soon enough) dumps to make this reasonable. However, if they’re taking advantage of the active component of a smart storage approach (i.e. leveraging the compute on the nodes) it could be useful. He urged caution about this, but did note that it’s not rocket science to figure out if you’re going to benefit from it, especially for checkpointing.

Another host of questions Grider says he often encounters revolves around where burst buffers should live. His answer speaks more to what the next generation of supercomputing nodes will likely look like when the software troubles are smoothed, which will probably be flash-heavy servers that perform the same active, smart storage tasks. Currently, however, they reside in a separate set of nodes inside the supercomputer since centralizing minimizes complexity. Having more integrated flow between the flash, compute, disk, and applications is probably going to take around 5 years or more, says Grider. But again, his current research work (as well as the work of others on the programming side) is addressing some of this. In comparison to the other software challenges needed for exascale, however, he notes, solving the little burst buffer problem is nothing.

Government-funded labs are getting the I/O economics message, if nothing else. As Grider told us, this is really the first time that an RFP round has focused on anything other than compute and capacity. Storage and data movement are active parts of the discussion, which is no surprise since so much productivity is lost due to failures—and on point here, the checkpointing and dumping required to make those less painful.

“The dumps we’re doing on systems now are in the hundreds of terabytes range.  In about two years, lots of machines are going to be doing this in the 2-5 petabyte range. If you dump that even at today’s sizes, you’re talking about over an hour to dump all the memory—and this is every four hours or so. That means every four hours you’ve lost an hour or more—and ultimately, that’s 25% of the machine that’s not being used for science. That’s the real economics argument just for checkpoint,” he said.

As reported this week, the new NERSC-8 “Cori” system had an option for a burst buffer built in to explore these possibilities and the other half of the joint RFP (the Trinity system) has the same goal of pushing to 90% efficiency. Since this can’t be done by adding cores and reducing power, minimizing the impact of checkpointing while eventually taking advantage of that time between bursts by doing meaningful work on that otherwise idle data promises a significant boost.

Just as Nick Wright and Katie Antypas told us this week during the NERSC-8 system announcement (okay, “Cori”), which was the other side of this RFP (Trinity announcement expected later this year), this will very likely be a component of exascale systems going forward. There is quite a bit of software work to be done, which will decide where these live and how they interface with the file system. Meanwhile, as the next generation of Lustre is being stapled together with this in mind by Grider and many others, we await news about which vendors are pushing burst buffers forward–and what the ultimate efficiency story will be.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

U.S. Quantum Director Charles Tahan Calls for NQIA Reauthorization Now

February 29, 2024

(February 29, 2024) Origin stories make the best superhero movies. I am no superhero, but I still remember what my undergraduate thesis advisor said when I told him that I wanted to design quantum computers in graduate s Read more…

pNFS Provides Performance and New Possibilities

February 29, 2024

At the cusp of a new era in technology, enterprise IT stands on the brink of the most profound transformation since the Internet's inception. This seismic shift is propelled by the advent of artificial intelligence (AI), Read more…

Celebrating 35 Years of HPCwire by Recognizing 35 HPC Trailblazers

February 29, 2024

In 1988, a new IEEE conference debuted in Orlando, Florida. The planners were expecting 200-300 attendees because the conference was focused on an obscure topic called supercomputing, but when it was announced that S Read more…

Forrester’s State of AI Report Suggests a Wave of Disruption Is Coming

February 28, 2024

The explosive growth of generative artificial intelligence (GenAI) heralds opportunity and disruption across industries. It is transforming how we interact with technology itself. During this early phase of GenAI technol Read more…

Q-Roundup: Google on Optimizing Circuits; St. Jude Uses GenAI; Hunting Majorana; Global Movers

February 27, 2024

Last week, a Google-led team reported developing a new tool - AlphaTensor Quantum - based on deep reinforcement learning (DRL) to better optimize circuits. A week earlier a team working with St. Jude Children’s Hospita Read more…

AWS Solution Channel

Shutterstock 2283618597

Deep-dive into Ansys Fluent performance on Ansys Gateway powered by AWS

Today, we’re going to deep-dive into the performance and associated cost of running computational fluid dynamics (CFD) simulations on AWS using Ansys Fluent through the Ansys Gateway powered by AWS (or just “Ansys Gateway” for the rest of this post). Read more…

Argonne Aurora Walk About Video

February 27, 2024

In November 2023, Aurora was ranked #2 on the Top 500 list. That ranking was with half of Aurora running the HPL benchmark. It seems after much delay, 2024 will finally be Aurora's time in the spotlight. For those cur Read more…

Royalty-free stock illustration ID: 1988202119

pNFS Provides Performance and New Possibilities

February 29, 2024

At the cusp of a new era in technology, enterprise IT stands on the brink of the most profound transformation since the Internet's inception. This seismic shift Read more…

Celebrating 35 Years of HPCwire by Recognizing 35 HPC Trailblazers

February 29, 2024

In 1988, a new IEEE conference debuted in Orlando, Florida. The planners were expecting 200-300 attendees because the conference was focused on an obscure t Read more…

Forrester’s State of AI Report Suggests a Wave of Disruption Is Coming

February 28, 2024

The explosive growth of generative artificial intelligence (GenAI) heralds opportunity and disruption across industries. It is transforming how we interact with Read more…

Q-Roundup: Google on Optimizing Circuits; St. Jude Uses GenAI; Hunting Majorana; Global Movers

February 27, 2024

Last week, a Google-led team reported developing a new tool - AlphaTensor Quantum - based on deep reinforcement learning (DRL) to better optimize circuits. A we Read more…

South African Cluster Competition Team Enjoys Big Texas HPC Adventure

February 26, 2024

Texas A&M University's High-Performance Research Computing (HPRC) hosted an elite South African delegation on February 8 - undergraduate computer science (a Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

Apple Rolls out Post Quantum Security for iOS

February 21, 2024

Think implementing so-called Post Quantum Cryptography (PQC) isn't important because quantum computers able to decrypt current RSA codes don’t yet exist? Not Read more…

QED-C Issues New Quantum Benchmarking Paper

February 20, 2024

The Quantum Economic Development Consortium last week released a new paper on benchmarking – Quantum Algorithm Exploration using Application-Oriented Performa Read more…

Training of 1-Trillion Parameter Scientific AI Begins

November 13, 2023

A US national lab has started training a massive AI brain that could ultimately become the must-have computing resource for scientific researchers. Argonne N Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia Wins SC23, But Gets Socked by Microsoft’s AI Chip

November 16, 2023

Nvidia was invisible with a very small booth and limited floor presence, but thanks to its sheer AI dominance, it was a winner at the Supercomputing 2023. Nv Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

Royalty-free stock illustration ID: 1675260034

RISC-V Summit: Ghosts of x86 and ARM Linger

November 12, 2023

Editor note: See SC23 RISC-V events at the end of the article At this year's RISC-V Summit, the unofficial motto was "drain the swamp," that is, x86 and Read more…

China Deploys Massive RISC-V Server in Commercial Cloud

November 8, 2023

If the U.S. government intends to curb China's adoption of emerging RISC-V architecture to develop homegrown chips, it may be getting late. Last month, China Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Chinese Company Developing 64-core RISC-V Chip with Tech from U.S.

November 13, 2023

Chinese chip maker SophGo is developing a RISC-V chip based on designs from the U.S. company SiFive, which highlights challenges the U.S. government may face in Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Royalty-free stock illustration ID: 1182444949

Forget Zettascale, Trouble is Brewing in Scaling Exascale Supercomputers

November 14, 2023

In 2021, Intel famously declared its goal to get to zettascale supercomputing by 2027, or scaling today's Exascale computers by 1,000 times. Moving forward t Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire