Burst Buffers Flash Exascale Potential

By Nicole Hemsoth

May 1, 2014

For any large-scale datacenter, be it a scientific supercomputer or hyperscale web farm, the constant battles of “defensive I/O” and “offensive I/O” take their toll on overall efficiency and productivity. From checkpointing to pushing performance on long-running applications, one set of technologies is pushing its way onto the frontlines. The “burst buffer” concept, as Los Alamos National Laboratory’s Gary Grider called it five years ago, is taking aim at both dueling I/O concerns and proving itself worthy at massive scale.

Although not a new concept, the noise around burst buffers has been growing, especially at this past November’s supercomputing show where numerous vendors, from DDN, EMC, NetApp and others demonstrated their wares in the form of flashy arrays with on-board compute to handle both checkpoint and recovery in addition to boosting application performance and efficiency. The promise is multi-facted; in addition to serving as a pure storage option, these flash+compute-equipped dedicated nodes can also make storage smarter and more active—eventually to the point where this layer is built into the overall workflow in both capacity and compute terms.

“This is all based on pure economics,” Grider said. “And we predicted that all of this was coming several years ago when we did our first spreadsheet analysis that showed what was happening with bandwidth and capacity in disk drives versus flash.” The report, which can be found here, basically showed how even then, in 2009, right about now it was going to be far more economical to do checkpointing in flash then move it into disk later.

It’s worth noting that Grider was spot-on during his original economic analysis back in 2009 with where this might go. The original chart below shows the projected trajectory:

Grider1

Despite some fluctuations in flash prices, the general trend is downward, which pushes this possibility, although it’s not just about large-scale datacenters having a cheaper route to reliable checkpointing. As the team continued to investigate burst buffers to tackle reliability, it became clear how many other uses were possible with flash and compute on a dedicated set of nodes. From debugging, data analysis, throwing in dynamic load modules and more, Grider and fellow researchers began to the see the light—the full spectrum of it. Since that time, much of his career has been devoted to moving the burst buffer message forward—but not without a few caveats.

As more research is pushed toward the idea, Grider and others hope it will be even more practical to look at burst buffers for supercomputers as more than pure storage and checkpointing devices. Eventually, as his pending work on the storage-focused Exascale I/O Fast Forward program reveals, it will be possible to ship function with the data that is shuttled over to the burst buffers, meaning that all of that structure that gives deeper meaning and possibility to otherwise idle data will no longer be squelched out by the file system’s serial bit tendencies. Instead, a complex (and still immature) software paradigm will let users take advantage of the smart, active nodes of the burst buffer to handle executables while at rest between data dumps.

Grider’s graphic showing how this plays out economically (and to some degree, practically) s in one of the newest systems, Trinity, adds some real-world context to what’s needed (not to mention possible).

Grider2

While this makes sense at Trinity and future pre-exascale and exascale system levels, these same economics don’t exactly translate into the wider world. “This isn’t for everyone,” Grider said bluntly. “This is the biggest misconception, which often leads to the most questions.” He notes that while the vendor community and now, general technology masses, are being told that burst buffers can solve the world’s problems. Quite simply, unless it’s at very large scale, investing in burst buffers for general checkpointing isn’t often economically sound since far more nodes means way more failure (and many more checkpoint halts). Besides, many smaller IT shops aren’t dealing with multiple terabyte (or petabyte soon enough) dumps to make this reasonable. However, if they’re taking advantage of the active component of a smart storage approach (i.e. leveraging the compute on the nodes) it could be useful. He urged caution about this, but did note that it’s not rocket science to figure out if you’re going to benefit from it, especially for checkpointing.

Another host of questions Grider says he often encounters revolves around where burst buffers should live. His answer speaks more to what the next generation of supercomputing nodes will likely look like when the software troubles are smoothed, which will probably be flash-heavy servers that perform the same active, smart storage tasks. Currently, however, they reside in a separate set of nodes inside the supercomputer since centralizing minimizes complexity. Having more integrated flow between the flash, compute, disk, and applications is probably going to take around 5 years or more, says Grider. But again, his current research work (as well as the work of others on the programming side) is addressing some of this. In comparison to the other software challenges needed for exascale, however, he notes, solving the little burst buffer problem is nothing.

Government-funded labs are getting the I/O economics message, if nothing else. As Grider told us, this is really the first time that an RFP round has focused on anything other than compute and capacity. Storage and data movement are active parts of the discussion, which is no surprise since so much productivity is lost due to failures—and on point here, the checkpointing and dumping required to make those less painful.

“The dumps we’re doing on systems now are in the hundreds of terabytes range.  In about two years, lots of machines are going to be doing this in the 2-5 petabyte range. If you dump that even at today’s sizes, you’re talking about over an hour to dump all the memory—and this is every four hours or so. That means every four hours you’ve lost an hour or more—and ultimately, that’s 25% of the machine that’s not being used for science. That’s the real economics argument just for checkpoint,” he said.

As reported this week, the new NERSC-8 “Cori” system had an option for a burst buffer built in to explore these possibilities and the other half of the joint RFP (the Trinity system) has the same goal of pushing to 90% efficiency. Since this can’t be done by adding cores and reducing power, minimizing the impact of checkpointing while eventually taking advantage of that time between bursts by doing meaningful work on that otherwise idle data promises a significant boost.

Just as Nick Wright and Katie Antypas told us this week during the NERSC-8 system announcement (okay, “Cori”), which was the other side of this RFP (Trinity announcement expected later this year), this will very likely be a component of exascale systems going forward. There is quite a bit of software work to be done, which will decide where these live and how they interface with the file system. Meanwhile, as the next generation of Lustre is being stapled together with this in mind by Grider and many others, we await news about which vendors are pushing burst buffers forward–and what the ultimate efficiency story will be.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Better Scientific Software: Turn Your Passion into Cash

September 13, 2019

Do you know your way around scientific software and programming? You think you can contribute to the community by making scientific software better? If so, then the Better Scientific Software (BSSW) organization wants yo Read more…

By Dan Olds

Google’s ML Compiler Initiative Advances

September 12, 2019

Machine learning models running on everything from cloud platforms to mobile phones are posing new challenges for developers faced with growing tool complexity. Google’s TensorFlow team unveiled an open-source machine Read more…

By George Leopold

HPC Perspectives with Dr. Seid Koric

September 12, 2019

Brendan McGinty, director of Industry for the National Center for Supercomputing Applications (NCSA), University of Illinois at Urbana-Champaign, kicks off the first in a series of pieces profiling leaders in high performance computing (HPC), writing for the... Read more…

By Brendan McGinty

AWS Solution Channel

A Guide to Discovering the Best AWS Instances and Configurations for Your HPC Workload

The flexibility and heterogeneity of HPC cloud services provide a welcome contrast to the constraints of on-premises HPC. Every HPC configuration is potentially accessible to any given workload in a well-resourced cloud HPC deployment, with vast scalability to spin up as much compute as that workload demands in any given moment. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Building a Solid IA for Your AI

The journey to high performance precision medicine starts with designing and deploying a solid Information Architecture that addresses the spectrum of challenges from data and applications that need to be managed and orchestrated together to empower workloads from analytics to AI. Read more…

IDAS: ‘Automagic’ HPC With Training Wheels

September 12, 2019

High-performance computing (HPC) for research is notorious for having steep barriers to entry. For this reason, high-tech disciplines were early adopters, have used the most cycles and typically drove hardware and softwa Read more…

By Elizabeth Leake

IDAS: ‘Automagic’ HPC With Training Wheels

September 12, 2019

High-performance computing (HPC) for research is notorious for having steep barriers to entry. For this reason, high-tech disciplines were early adopters, have Read more…

By Elizabeth Leake

Univa Brings Cloud Automation to Slurm Users with Navops Launch 2.0

September 11, 2019

Univa, the company behind Grid Engine, announced today its HPC cloud-automation platform NavOps Launch will support the popular open-source workload scheduler Slurm. With the release of NavOps Launch 2.0, “Slurm users will have access to the same cloud automation capabilities... Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

Eyes on the Prize: TACC’s Frontera Quickly Ramps up Science Agenda

September 9, 2019

Announced a year ago and officially launched a week ago, the Texas Advanced Computing Center’s Frontera – now the fastest academic supercomputer (~25 petefl Read more…

By John Russell

Quantum Roundup: IBM Goes to School, Delft Tackles Networking, Rigetti Updates

September 5, 2019

IBM today announced a new open source quantum ‘textbook’, a series of quantum education videos, and plans to expand its nascent quantum hackathon program. L Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Fastest Academic Supercomputer Enters Full Production at TACC, Just in Time for Hurricane Season

September 3, 2019

Frontera, the NSF supercomputer installed at the Texas Advanced Computing Center (TACC) in June, passed its formal acceptance last week and is now officially la Read more…

By Tiffany Trader

MIT Prepares for Satori…and a New 2 Petaflops Computer Too

August 27, 2019

Sometime this fall, MIT will fire up Satori – an $11.6 million compute cluster donated by IBM and coinciding with the opening of the MIT Stephen A. Schwarzma Read more…

By John Russell

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This