Graphene Faces Real-World Limitations

By Tiffany Trader

May 5, 2014

Graphene is a one-atom-thick layer of carbon that has been hailed as a potential silicon replacement capable of extending the exponential computing advances that modern society has come to depend on. Despite the material’s profile of being strong, flexible, light-weight and a good conductor, there are still a number of challenges that must addressed before it is suitable for use in microprocessors and other electronics devices.

Researchers the world over are pushing hard to advance the status of this potential wonder material. This week two teams of scientists, one hailing from the University of Texas at Austin and the other a combined team from Rice University and the Georgia Institute of Technology, released different findings relating to graphene. The first sheds light on a particular thorny challenge regarding how graphene is used in real-world devices, and the second concerns the brittle nature of graphene sheets, which it has been found are only as strong as their weakest link. Computational modeling was integral to both projects.

The University of Texas at Austin team, led by Li Shi, a professor of mechanical engineering, along with graduate research assistant Mir Mohammad Sadeghi and post-doctoral fellow Insun Jo, structured an experiment in order to study thermal conductivity when the thickness of graphene on a substrate was increased. Thermal conductivity is a critical property as electronics components head to the nanoscale. It enables heat to distribute out such that hot spots are prevented. When graphene is in its ideal state, i.e. freely suspended in a vacuum, it is excellent thermal conductivity. Alas real-world conditions are not so ideal.

As Li Shi explains: “When you fabricate devices using graphene, you have to support the graphene on a substrate and doing so actually suppresses the high thermal conductivity of graphene.”

The team observed that thermal conductivity increased as the number of layers grew from a single one-atom layer up to 34 layers, but not to the point where it was as high as so-called bulk graphite, which is an excellent heat conductor.

The findings, which appear in the September 2013 issue of the Proceedings of the National Academy of Sciences, have prompted the team to explore new ways of supporting or connecting graphene with the macroscopic world. Among the techniques they are considering are three-dimensional interconnected foam structures of graphene and ultrathin graphite, as well as hexagonal boron nitride, which has a crystal structure very similar to graphene. Germanane is another material that shows promise for use in electronics or thermoelectric energy conversion devices.

The theoretical calculations that underpinned much of this work were performed on the 10-petaflop (peak) Stampede supercomputer. The NSF-funded system, one of the most powerful in the world, is housed at the Texas Advanced Computing Center (TACC) at The University of Texas at Austin.

“In order to really understand the physics, you need to include additional theoretical calculations. That’s why we use the supercomputers at TACC,” said Shi. “When you do an experiment, you see a trend, but without doing the calculations you don’t really know what it means. The combination of the two is very powerful. If you just do one without doing the other, you might not develop the understanding needed.”

In a separate study, researchers Jun Lou at Rice and Ting Zhu at Georgia Tech also look at the limitations of graphene in real-world settings. The bonds between carbon atoms are known to be the strongest in nature, and it follows that a perfect sheet of graphene would share this property, but in actual applications, graphene sheets do not live up to their theroetical promise. In a first of its kind experiment, the two researchers measured the fracture toughness of graphene that was marred with minor imperfections to simulate real-world conditions and found it to be “substantially lower” than the instrinsic strength of graphene.

“Everybody thinks the carbon-carbon bond is the strongest bond in nature, so the material must be very good,” Lou said. “But that’s not true anymore, once you have those defects. The larger the sheet, the higher the probability of defects. That’s well known in the ceramic community.”

The Rice team did the experiments and the Georgia Tech team ran computer simulations of the entire fracture process. The modeling was tightly coupled with the experiments, said Zhu.

Because most graphene has defects, its actual strength is likely to be significantly lower than the intrinsic strength of a perfect sheet of the atom-thick carbon material. The findings provide a deeper understanding of how defects will affect the handling, processing and manufacture of the materials, said Lou. It also demonstrates the importance of manufacturing graphene sheets that are made to exacting standards, as free from errors as is feasible.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger communities? That question is at the heart of a new study pub Read more…

By Tiffany Trader

Google Launches Site to Share its NYC-based Algorithm Research

August 22, 2017

Much of Google’s algorithm development occurs in groups scattered throughout New York City. Yesterday, Google launched a single website - NYC Algorithms and Optimization Team page - to provide a deeper view into all of Read more…

By John Russell

Dell Strikes Reseller Deal with Atos; Supplants SGI

August 22, 2017

Dell EMC and Atos announced a reseller deal today in which Dell will offer Atos’ high-end 8- and 16-socket Bullion servers. Some move from Dell had been expected following Hewlett Packard Enterprise’s purchase of SGI Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Glimpses of Today’s Total Solar Eclipse

August 21, 2017

Here are a few arresting images posted by NASA of today’s total solar eclipse. Such astronomical events have always captured our imagination and it’s not hard to understand why such occurrences were often greeted wit Read more…

By John Russell

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger c Read more…

By Tiffany Trader

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This