Japan’s Extreme Scale Computing Expert Talks Big Data

By Nages Sieslack

May 5, 2014

The International Supercomputing Conference (ISC’14) has invited one of Japan’s leading HPC experts, Professor Satoshi Matsuoka to deliver a keynote titled “If You Can’t Beat Them, Lead Them – Convergence of Supercomputing and Next Generation ‘Extreme’ Big Data,”

In this thought-provoking talk on Tuesday, June 24, Matsuoka will share why he believes that supercomputer architectures will converge with those of big data and serve a crucial technological role for the industry. His assertion will be exemplified with a number of recent Japanese research projects in this area, including the JST-CREST “Extreme Big Data” project. To understand more about these projects and where they fit into the larger scope of extreme scale computing, we spoke with Matsuoka.

Is there a distinction between “data” and “big data?”

Satoshi Matsuoka: Of course. In fact, I categorize “simple data”, “big data” and “extreme big data” as three different domains.

“Big data” implies two principle characteristics. One is from semantic perspective, in that large data sets are collected in a rather unbiased fashion; and then one would try to extract some meaningful correlative information out of them, using various methods such as data mining, deep learning, graph analytics, etc. Another is from a system perspective, in that the data volume, bandwidth, etc., are too large to be processed with conventional machines, even those geared for traditional databases. The system components, both hardware and software, need enhancements in order to support the increased level of processing. In this sense, big data’s “super data processing” is to normal data processing as supercomputing is to normal computing.

By extreme big data we mean that the data volumes, as well as the computational needs, become so big that a simple extension of conventional big data processing architectures would no longer be feasible and will require convergence with supercomputing technologies and platforms.

How is big data relevant to the HPC space and how has the term evolved over time?  Is it something different than what used to be called “data-intensive computing?”

Matsuoka: In some sense HPC has been the pioneer of big data from the days of data-intensive computing. Even as far back as 20 years ago, researchers running climate codes were starting to struggle with terabytes of data when the general public was still in the gigabyte days.

By all means, the general area now covered by big data is much wider. Also due to the emergence of new application areas such as genomics, data-intensive computing in HPC has broadened to the extent that its own coverage has expanded.

How do you envision the convergence between big data and HPC to happen?

Matsuoka: What is unique in the current big data trend is the stress on various data analytics algorithm, such as deep learning and graph analytics. This, coupled with various other factors are requiring some changes to the HPC hardware and software stack, such as the need for a massive increase in data capacity and bandwidth. By contrast traditional HPC is trending toward high bandwidth but low memory capacity.

But since HPC also suffers from lack of memory capacity, the convergence at the hardware level will mostly be in the area of designing capacity-friendly deep memory hierarchies. This applies both to memory depth within a node, using new memory technologies and associated processor architectures,  as well as memory width across nodes, requiring extensive use of optics to support high bandwidth and low latency.

From the data side, the needs will be driven by the so-called “broken silos.” Data stored across multiple institutions and disciplines, as well as the proliferation of the internet of things, will cause the data capacities and the compute from the cross-correlations to simply explode. We now have big data applications in genomics that run on almost the entire K-computer, using the abundance of its one-petabyte memory and 660,000 cores. That is already about 1/5 to 1/7 the entire capacity of Amazon according to a major IT consulting company’s estimate. Think of the exascale era when we will have big data apps that require 100 million cores, a number that makes even Google miniscule by comparison.

Right now we have the enterprise with their own application use cases for big data, and perhaps even their own understanding of what the term means. With that in mind, how will a convergence of HPC and big data affect those users?

Matsuoka: Industry also adopts HPC but considers those applications distinct from mainstream computing. By their convergence enterprise and HPC users will learn to better exploit the combined technologies and also allow for the emergence of new applications that tie massive compute to data analytics. We already see examples now in areas such as genomics and design engineering.

Can you please elaborate on Japan’s role in advancing big data technologies and driving its convergence with HPC?

Matsuoka: For Japan, both HPC and big data are high on the agenda for research as well as the industry. It is prudent that we work with other regions of the world with similar vision to push both envelopes. The proposed HPC projects in Japan towards exascale will likely have increased emphasis on extreme big data as well.

ISC14_ml_1Now in its 29th year, ISC is the world’s oldest and Europe’s most important conference and networking event for the HPC community, offering a strong five-day technical program focusing on HPC technological development, and its application in scientific fields as well as its adoption in an industrial environment.

Over 300 hand-picked expert speakers and 170 exhibitors, consisting of leading research centers and vendors, will greet this year’s attendees to ISC. A number of events complement the technical program including Tutorials, the TOP500 Announcement, Research Paper Sessions, Birds of a Feather (BoF) Sessions, the Research Poster Session, Exhibitor Forums, and Workshops. For more, visit www.isc14.org.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This