Japan’s Extreme Scale Computing Expert Talks Big Data

By Nages Sieslack

May 5, 2014

The International Supercomputing Conference (ISC’14) has invited one of Japan’s leading HPC experts, Professor Satoshi Matsuoka to deliver a keynote titled “If You Can’t Beat Them, Lead Them – Convergence of Supercomputing and Next Generation ‘Extreme’ Big Data,”

In this thought-provoking talk on Tuesday, June 24, Matsuoka will share why he believes that supercomputer architectures will converge with those of big data and serve a crucial technological role for the industry. His assertion will be exemplified with a number of recent Japanese research projects in this area, including the JST-CREST “Extreme Big Data” project. To understand more about these projects and where they fit into the larger scope of extreme scale computing, we spoke with Matsuoka.

Is there a distinction between “data” and “big data?”

Satoshi Matsuoka: Of course. In fact, I categorize “simple data”, “big data” and “extreme big data” as three different domains.

“Big data” implies two principle characteristics. One is from semantic perspective, in that large data sets are collected in a rather unbiased fashion; and then one would try to extract some meaningful correlative information out of them, using various methods such as data mining, deep learning, graph analytics, etc. Another is from a system perspective, in that the data volume, bandwidth, etc., are too large to be processed with conventional machines, even those geared for traditional databases. The system components, both hardware and software, need enhancements in order to support the increased level of processing. In this sense, big data’s “super data processing” is to normal data processing as supercomputing is to normal computing.

By extreme big data we mean that the data volumes, as well as the computational needs, become so big that a simple extension of conventional big data processing architectures would no longer be feasible and will require convergence with supercomputing technologies and platforms.

How is big data relevant to the HPC space and how has the term evolved over time?  Is it something different than what used to be called “data-intensive computing?”

Matsuoka: In some sense HPC has been the pioneer of big data from the days of data-intensive computing. Even as far back as 20 years ago, researchers running climate codes were starting to struggle with terabytes of data when the general public was still in the gigabyte days.

By all means, the general area now covered by big data is much wider. Also due to the emergence of new application areas such as genomics, data-intensive computing in HPC has broadened to the extent that its own coverage has expanded.

How do you envision the convergence between big data and HPC to happen?

Matsuoka: What is unique in the current big data trend is the stress on various data analytics algorithm, such as deep learning and graph analytics. This, coupled with various other factors are requiring some changes to the HPC hardware and software stack, such as the need for a massive increase in data capacity and bandwidth. By contrast traditional HPC is trending toward high bandwidth but low memory capacity.

But since HPC also suffers from lack of memory capacity, the convergence at the hardware level will mostly be in the area of designing capacity-friendly deep memory hierarchies. This applies both to memory depth within a node, using new memory technologies and associated processor architectures,  as well as memory width across nodes, requiring extensive use of optics to support high bandwidth and low latency.

From the data side, the needs will be driven by the so-called “broken silos.” Data stored across multiple institutions and disciplines, as well as the proliferation of the internet of things, will cause the data capacities and the compute from the cross-correlations to simply explode. We now have big data applications in genomics that run on almost the entire K-computer, using the abundance of its one-petabyte memory and 660,000 cores. That is already about 1/5 to 1/7 the entire capacity of Amazon according to a major IT consulting company’s estimate. Think of the exascale era when we will have big data apps that require 100 million cores, a number that makes even Google miniscule by comparison.

Right now we have the enterprise with their own application use cases for big data, and perhaps even their own understanding of what the term means. With that in mind, how will a convergence of HPC and big data affect those users?

Matsuoka: Industry also adopts HPC but considers those applications distinct from mainstream computing. By their convergence enterprise and HPC users will learn to better exploit the combined technologies and also allow for the emergence of new applications that tie massive compute to data analytics. We already see examples now in areas such as genomics and design engineering.

Can you please elaborate on Japan’s role in advancing big data technologies and driving its convergence with HPC?

Matsuoka: For Japan, both HPC and big data are high on the agenda for research as well as the industry. It is prudent that we work with other regions of the world with similar vision to push both envelopes. The proposed HPC projects in Japan towards exascale will likely have increased emphasis on extreme big data as well.

ISC14_ml_1Now in its 29th year, ISC is the world’s oldest and Europe’s most important conference and networking event for the HPC community, offering a strong five-day technical program focusing on HPC technological development, and its application in scientific fields as well as its adoption in an industrial environment.

Over 300 hand-picked expert speakers and 170 exhibitors, consisting of leading research centers and vendors, will greet this year’s attendees to ISC. A number of events complement the technical program including Tutorials, the TOP500 Announcement, Research Paper Sessions, Birds of a Feather (BoF) Sessions, the Research Poster Session, Exhibitor Forums, and Workshops. For more, visit www.isc14.org.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This