Advanced Wind Farm Simulations Key to Energy Strategy

By Tiffany Trader

May 14, 2014

With energy consumption on the rise around the world, interest in renewable energy sources has taken off. Wind power is a major component of the US energy strategy – it’s known for being affordable, efficient and abundant, as well as being pollution-free. Over the last decade, wind turbine farms have become a common feature, dotting landscapes across the nation, and today such massive operations comprise 4 percent of the total electricity generated in the US.

While wind power has many positive attributes, it’s main downside is its sporadic nature. In fact, actual power production is correlated with a range of atmospheric variables, such as wind speed and turbulence, as well as spatial and temporal scales.

Getting the most energy from these mechanical giants is thus a complex endeavor, but research teams are working hard to reduce the uncertainty that affects wind power forecasts. One of the main sites dedicated to optimizing wind power in the US is Lawrence Livermore National Laboratory. The lab has about a dozen atmospheric scientists, mechanical and computational engineers, and statisticians using fieldwork, advanced simulation, and statistical analysis to boost wind power production. High-performance computing is integral to the effort.

Jeff Roberts, Program Leader for Renewable Energy and Energy Systems, recently published a letter describing the lab’s role in developing this valuable resource.

“We must reduce our dependence on imported fossil fuels while ensuring plentiful clean energy with renewable sources,” Roberts writes. “The wind, however, is an intermittent resource that is challenging to predict, sometimes varying significantly from minute to minute. What’s more, complex atmospheric factors, such as turbulence, and topographical features, such as hills, modify the wind speed and direction and hence the power that can be extracted by wind turbines. Turbulence also plays an important role in the reliability and life span of turbine components.”

These simulations can be extraordinarily complicated, says Roberts. The complexity is owed to length scales that can an span eight orders of magnitude – from millimeters in the rotor-blade boundary layer to 100 kilometers for large atmospheric weather patterns.

“Simulating wind change and its effects on turbines is challenging because of the complex forces driving wind,” explains Livermore mechanical engineer Wayne Miller, associate program leader for wind and solar power. “We’re essentially simulating a fluid flow in an environment where factors such as aerosols, clouds, humidity, surface–atmosphere energy exchange, and terrain influence to varying degrees both the complexity of the flow and how much power can be extracted by a spinning turbine.”

The computational challenges are numerous, especially when simulating farms of more than 100 turbines. Terrain variations can significantly alter output from one turbine to the next and there are wakes coming from the spinning turbine blades that diminish power from turbines downstream. To negotiate these complexities, scientists are expanding the applicability of the Weather Research Forecasting (WRF) modeling system to be suitable for wind farm scale. Developed primarily for larger-scale weather applications, WRF is maintained by more than 10,000 users and contributors worldwide.

The model was modified for use at smaller scales and to satisfy the multiscale requirements of wind power forecasting. For example, a job may start out with a simulation of the western US to capture the dominant weather patterns. Then a combination of smaller grid spacing and models developed at Livermore are pulled in to accurately capture the smaller-scale features that affect wind farms.

The project seeks to blend WRF atmospheric simulation with scales of motion that are typically the purview of computational fluid dynamics (CFD) codes. To more expertly capture the complex interplay of variables, Livermore scientists have brought in a number of codes, such as WRF-GAD, immersed boundary method (IBM), as well as CGWind and HPCMP CREATE-AV Helios (aka HELIOS), which are used for even smaller-scale simulations that are outside the range of WRF.

A team of scientists from Livermore and University of Wyoming employed the WRF model and HELIOS to perform the first-ever simulation of a 50-turbine wind farm that takes into account individual spinning turbine blades using turbulent winds. This degree of precision and realism is helping researchers to understand why real wind farms fall short of their theoretical counterparts.

Atmospheric scientist Jeff Mirocha is one of the project leads exploring ways of studying phenomena that are specific to a wind farm environment. “The simulation framework we are developing will provide advanced tools to address these knowledge gaps,” he says, “leading to improved operations, longer component life spans, and ultimately cheaper electricity.”

President Barack Obama’s administration has set a goal for the nation to obtain 20 percent of its electricity from wind energy by 2030. The LLNL team thinks that’s a reasonable goal given the current high rate of wind turbine deployment nationwide. From 2008 to 2012, wind power capacity has expanded by 167 percent.

With precision models like the ones LLNL and its parters are developing, wind farm developers and operators have the information they need to select ideal wind farm locations and run the sites more efficiently.

“It’s a big team effort,” says Livermore’s Miller. Other collaborators include National Renewable Energy Laboratory, National Center for Atmospheric Research, University of Colorado at Boulder, Sandia and Pacific Northwest national laboratories, University of Wyoming, University of Oklahoma, University of California at Berkeley, U.S. Army, and other wind power industry stakeholders. Funding comes from the Department of Energy’s (DOE’s) Office of Energy Efficiency and Renewable Energy, as well as Livermore’s Laboratory Directed Research and Development (LDRD) Program, and industrial partnerships.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

China’s Expanding Effort to Win in Microchips

July 27, 2017

The global battle for preeminence, or at least national independence, in semiconductor technology and manufacturing continues to heat up with Europe, China, Japan, and the U.S. all vying for sway. A fascinating article ( Read more…

By John Russell

Hyperion: Storage to Lead HPC Growth in 2016-2021

July 27, 2017

Global HPC external storage revenues will grow 7.8% over the 2016-2021 timeframe according to an updated forecast released by Hyperion Research this week. HPC server sales, by comparison, will grow a modest 5.8% to $14.8 Read more…

By John Russell

Exascale FY18 Budget – The Senate Provides Their Input

July 27, 2017

In the federal budgeting world, “regular order” is a meaningful term that is fondly remembered by members of both the Congress and the Executive Branch. Regular order is the established process whereby an Administrat Read more…

By Alex R. Larzelere

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

India Plots Three-Phase Indigenous Supercomputing Strategy

July 26, 2017

Additional details on India's plans to stand up an indigenous supercomputer came to light earlier this week. As reported in the Indian press, the Rs 4,500-crore (~$675 million) supercomputing project, approved by the Ind Read more…

By Tiffany Trader

Exascale FY18 Budget – The Senate Provides Their Input

July 27, 2017

In the federal budgeting world, “regular order” is a meaningful term that is fondly remembered by members of both the Congress and the Executive Branch. Reg Read more…

By Alex R. Larzelere

India Plots Three-Phase Indigenous Supercomputing Strategy

July 26, 2017

Additional details on India's plans to stand up an indigenous supercomputer came to light earlier this week. As reported in the Indian press, the Rs 4,500-crore Read more…

By Tiffany Trader

Tuning InfiniBand Interconnects Using Congestion Control

July 26, 2017

InfiniBand is among the most common and well-known cluster interconnect technologies. However, the complexities of an InfiniBand (IB) network can frustrate the Read more…

By Adam Dorsey

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a comm Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This