Advanced Wind Farm Simulations Key to Energy Strategy

By Tiffany Trader

May 14, 2014

With energy consumption on the rise around the world, interest in renewable energy sources has taken off. Wind power is a major component of the US energy strategy – it’s known for being affordable, efficient and abundant, as well as being pollution-free. Over the last decade, wind turbine farms have become a common feature, dotting landscapes across the nation, and today such massive operations comprise 4 percent of the total electricity generated in the US.

While wind power has many positive attributes, it’s main downside is its sporadic nature. In fact, actual power production is correlated with a range of atmospheric variables, such as wind speed and turbulence, as well as spatial and temporal scales.

Getting the most energy from these mechanical giants is thus a complex endeavor, but research teams are working hard to reduce the uncertainty that affects wind power forecasts. One of the main sites dedicated to optimizing wind power in the US is Lawrence Livermore National Laboratory. The lab has about a dozen atmospheric scientists, mechanical and computational engineers, and statisticians using fieldwork, advanced simulation, and statistical analysis to boost wind power production. High-performance computing is integral to the effort.

Jeff Roberts, Program Leader for Renewable Energy and Energy Systems, recently published a letter describing the lab’s role in developing this valuable resource.

“We must reduce our dependence on imported fossil fuels while ensuring plentiful clean energy with renewable sources,” Roberts writes. “The wind, however, is an intermittent resource that is challenging to predict, sometimes varying significantly from minute to minute. What’s more, complex atmospheric factors, such as turbulence, and topographical features, such as hills, modify the wind speed and direction and hence the power that can be extracted by wind turbines. Turbulence also plays an important role in the reliability and life span of turbine components.”

These simulations can be extraordinarily complicated, says Roberts. The complexity is owed to length scales that can an span eight orders of magnitude – from millimeters in the rotor-blade boundary layer to 100 kilometers for large atmospheric weather patterns.

“Simulating wind change and its effects on turbines is challenging because of the complex forces driving wind,” explains Livermore mechanical engineer Wayne Miller, associate program leader for wind and solar power. “We’re essentially simulating a fluid flow in an environment where factors such as aerosols, clouds, humidity, surface–atmosphere energy exchange, and terrain influence to varying degrees both the complexity of the flow and how much power can be extracted by a spinning turbine.”

The computational challenges are numerous, especially when simulating farms of more than 100 turbines. Terrain variations can significantly alter output from one turbine to the next and there are wakes coming from the spinning turbine blades that diminish power from turbines downstream. To negotiate these complexities, scientists are expanding the applicability of the Weather Research Forecasting (WRF) modeling system to be suitable for wind farm scale. Developed primarily for larger-scale weather applications, WRF is maintained by more than 10,000 users and contributors worldwide.

The model was modified for use at smaller scales and to satisfy the multiscale requirements of wind power forecasting. For example, a job may start out with a simulation of the western US to capture the dominant weather patterns. Then a combination of smaller grid spacing and models developed at Livermore are pulled in to accurately capture the smaller-scale features that affect wind farms.

The project seeks to blend WRF atmospheric simulation with scales of motion that are typically the purview of computational fluid dynamics (CFD) codes. To more expertly capture the complex interplay of variables, Livermore scientists have brought in a number of codes, such as WRF-GAD, immersed boundary method (IBM), as well as CGWind and HPCMP CREATE-AV Helios (aka HELIOS), which are used for even smaller-scale simulations that are outside the range of WRF.

A team of scientists from Livermore and University of Wyoming employed the WRF model and HELIOS to perform the first-ever simulation of a 50-turbine wind farm that takes into account individual spinning turbine blades using turbulent winds. This degree of precision and realism is helping researchers to understand why real wind farms fall short of their theoretical counterparts.

Atmospheric scientist Jeff Mirocha is one of the project leads exploring ways of studying phenomena that are specific to a wind farm environment. “The simulation framework we are developing will provide advanced tools to address these knowledge gaps,” he says, “leading to improved operations, longer component life spans, and ultimately cheaper electricity.”

President Barack Obama’s administration has set a goal for the nation to obtain 20 percent of its electricity from wind energy by 2030. The LLNL team thinks that’s a reasonable goal given the current high rate of wind turbine deployment nationwide. From 2008 to 2012, wind power capacity has expanded by 167 percent.

With precision models like the ones LLNL and its parters are developing, wind farm developers and operators have the information they need to select ideal wind farm locations and run the sites more efficiently.

“It’s a big team effort,” says Livermore’s Miller. Other collaborators include National Renewable Energy Laboratory, National Center for Atmospheric Research, University of Colorado at Boulder, Sandia and Pacific Northwest national laboratories, University of Wyoming, University of Oklahoma, University of California at Berkeley, U.S. Army, and other wind power industry stakeholders. Funding comes from the Department of Energy’s (DOE’s) Office of Energy Efficiency and Renewable Energy, as well as Livermore’s Laboratory Directed Research and Development (LDRD) Program, and industrial partnerships.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break “Speed Limit”

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Intel Ships Drives Based on 3-D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3-D XPoint non-volatile memory technology as it targets data-driven workloads. Read more…

By George Leopold

Researchers Recreate ‘El Reno’ Tornado on Blue Waters Supercomputer

March 16, 2017

The United States experiences more tornadoes than any other country. About 1,200 tornadoes touch down each each year in the U.S. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

AMD Expands Exascale Vision at IEEE HPC Symposium

March 7, 2017

With the race towards exascale heating up – for example, the Exascale Computing Program PathForward awards are expected soon – AMD delivered more details of its exascale vision at last month’s 23rd IEEE Symposium on High Performance Computer Architecture. The chipmaker presented an “Exascale Node Architecture (ENA) as the primary building block for exascale machine” including descriptions of component, interconnect, and packaging strategy along with simulation benchmarks to bolster its case. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This