What Drives Investment in the Middle of HPC?

By Nicole Hemsoth

May 15, 2014

When it comes to covering supercomputers, the most attention falls on the front runners on the Top 500. However, a closer look at the tail-end of the rankings reveals some rather interesting use cases—not to mention courses of development, system design, and user-driven requirements for future build out.

The University of Florida is home to one expanding system, which rests just at the cutoff of the top supercomputing rankings at #493. The university’s Director of Research Computing, Dr. Erik Deumens, tells us the real purpose of the system is to support as many diverse applications as possible with as few queue barriers as possible. While this is a familiar claim no matter what size the site may be, the team has gone through great lengths to ensure that current developments to make their flagship system, called HiPerGator, are fed solely by user demand.

It might not be surprising then, at least to those in research computing, that the demand for the latest generation of processors with a 10 or 20% performance jump is far less critical than simply being able to onboard an application without a long queue and run in a reasonable amount of time. But meeting that need requires some serious thought about capacity, scheduling, and meeting diverse application requirements. In other words, for those tuning in for the ultra-high performance computing story, this isn’t the most exciting tale, but there are some important lessons to be learned from his team’s experiences working with a broad range of applications and over 600 users to find out what really creates a fully functional system—all based on what amounts to an “economic” decision-making process for their HPC investments.

In essence, the economics of demand determine the spending decisions at the University of Florida and several other similar centers. This isn’t so different than the large scientific computing sites in theory, except user requests trump all—including power or other considerations. “If the users are asking for the latest novel technology but it’s not the most efficient, we aren’t going to deny them what they need for their research,” says Deumens. In the case of HiPerGator, the university funds the system and staffing so that that individual researchers can use their grants to buy a desired number of cores for their jobs. Flexibility is built into the “purchase” as users can go past 10x what they requested as needed to avoid added complexity in terms of scheduling and managing their jobs. Deumens and team use Moab and Torque to handle the many requests, in addition to offering the capability for more sophisticated users to fine-tune their requests according to the mix of available architectures. The system tends to run under its maximum capacity at all times so that there are not long wait times since the one thing that researchers want—timely (if not immediate) access to computational resources that run in the anticipated timeframe. And essentially, says Deumens, everyone is happy.

For some background, the HiPerGator system in its original incarnation (announced last year) offered up over 16,000 AMD “Abu Dhabi” cores with Dell underpinnings, a 2.88 petabyte Terascala-built Lustre-based system and Mellanox’s Infiniband throughout. They’ve since added an additional round of cores from pre-existing systems (both Intel and AMD), bringing their HPC core count to over 21,000. There is a set of nodes that provide a total of 80 GPUs in addition and more planned for the future—in addition to the possibility of Xeon Phi cores as well as they plan their build-out to be completed by this time next year. “There are always exceptions but most of our users don’t care what processor generation they’re running on. They just want to get their work done.” And all the while, his team keeps very careful track of what the users are looking for in terms of new or existing hardware and they use this information to tally what they ask vendors for during each year’s hardware and software buying cycles.

To put this in context, when the original HiPerGator emerged, there were a total of 8 GPUs available to researchers, which they bought simply to support the mission of a semester-long class that required them for special projects. However, once researchers at the university knew they were available, they began experimenting with porting codes, including AMBER on the molecular dynamics front. These development activities led the application teams to desire full production runs, which required more GPUs. And so their unexpected influx of GPU nodes occurred organically. This is the exact type of case that will feed how the next generation of their system develops—actual user interest means more “purchases” from researchers, but to keep their one main goal of providing solid resources without the wait times, they’ll make sure to supply ample nodes with whatever the research community seems to desire.

Deumens and team are taking those desires on the road in the next months. They’re currently in the midst of looking for vendors to help them supply the needs of HiPerGator 2, which again, is slated for this time next year. He gave us a sense of what works—and doesn’t—when it comes to supporting research at a university that wants to become a top tier research center based on its HPC capabilities.

First, he says, there are some successes in terms of their approach to scheduling. It used to be a manual process, but has been eased through their Moab and Torque engines. Further, he highlighted the increasing role of Galaxy, the open source scientific gateway project for creating, tracking and sharing scientific workflows that has taken off in the biosciences community. He also says that for a research center their size, the more cores they have available, the better. While some of their users can take advantage of their Infiniband fabric and run MPI or SMP jobs, in the end it’s all about getting up and running.

The other element that has worked for research teams at the University of Florida is having a stable, strong storage system like their Terascala solution, which is capable of handling massive data flows—an increasing problem for all scientific computing sites as data demands scramble to meet the computing capacity that is available.

What’s missing from their system is something that will be difficult for any of the vendors who supply the next iteration of the machine next year. And it’s something we’ve heard from much larger centers. There is a dramatic need to make a “super app” of sorts that turns a researcher’s desktop machine into a direct link to the supercomputing site, handling scheduling, data movement, and output in a seamless, portable interface. While this seems like it might be easy in this era of web-based interfaces for everything, it’s what’s really missing for centers designed around simply serving scientific users—and something that he and his team will continue to look toward in the coming years.

It was interesting to listen to the difference in concerns about power, performance and ease of access from the perspective of a much smaller HPC site than the top ten system managers we so often talk to. Power is always a concern, of course, but at smaller scale when exascale is something for the DoE and other government labs internationally to worry about, the problems of real-world daily operations boil down to one simple factor—make a supercomputer easy to use, quick to load into, and predictable in its time to result. A humbling reminder after so many conversations about eeking performance out of the hottest processors, largest systems and biggest power footprints on the planet.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is enjoying a prosperity seen only every few decades, one driven Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, produ Read more…

By John Russell

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

From Deep Blue to Summit – 30 Years of Supercomputing Innovation

This week, in honor of the 30th anniversary of the SC conference, we are highlighting some of the most significant IBM contributions to supercomputing over the past 30 years. Read more…

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is en Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competitio Read more…

By Dan Olds

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

OpenACC Talks Up Summit and Community Momentum at SC18

November 12, 2018

OpenACC – the directives-based parallel programing model for optimizing applications on heterogeneous architectures – is showcasing user traction and HPC im Read more…

By John Russell

How ASCI Revolutionized the World of High-Performance Computing and Advanced Modeling and Simulation

November 9, 2018

The 1993 Supercomputing Conference was held in Portland, Oregon. That conference and it’s show floor provided a good snapshot of the uncertainty that U.S. supercomputing was facing in the early 1990s. Many of the companies exhibiting that year would soon be gone, either bankrupt or acquired by somebody else. Read more…

By Alex R. Larzelere

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Leading Solution Providers

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This