What Drives Investment in the Middle of HPC?

By Nicole Hemsoth

May 15, 2014

When it comes to covering supercomputers, the most attention falls on the front runners on the Top 500. However, a closer look at the tail-end of the rankings reveals some rather interesting use cases—not to mention courses of development, system design, and user-driven requirements for future build out.

The University of Florida is home to one expanding system, which rests just at the cutoff of the top supercomputing rankings at #493. The university’s Director of Research Computing, Dr. Erik Deumens, tells us the real purpose of the system is to support as many diverse applications as possible with as few queue barriers as possible. While this is a familiar claim no matter what size the site may be, the team has gone through great lengths to ensure that current developments to make their flagship system, called HiPerGator, are fed solely by user demand.

It might not be surprising then, at least to those in research computing, that the demand for the latest generation of processors with a 10 or 20% performance jump is far less critical than simply being able to onboard an application without a long queue and run in a reasonable amount of time. But meeting that need requires some serious thought about capacity, scheduling, and meeting diverse application requirements. In other words, for those tuning in for the ultra-high performance computing story, this isn’t the most exciting tale, but there are some important lessons to be learned from his team’s experiences working with a broad range of applications and over 600 users to find out what really creates a fully functional system—all based on what amounts to an “economic” decision-making process for their HPC investments.

In essence, the economics of demand determine the spending decisions at the University of Florida and several other similar centers. This isn’t so different than the large scientific computing sites in theory, except user requests trump all—including power or other considerations. “If the users are asking for the latest novel technology but it’s not the most efficient, we aren’t going to deny them what they need for their research,” says Deumens. In the case of HiPerGator, the university funds the system and staffing so that that individual researchers can use their grants to buy a desired number of cores for their jobs. Flexibility is built into the “purchase” as users can go past 10x what they requested as needed to avoid added complexity in terms of scheduling and managing their jobs. Deumens and team use Moab and Torque to handle the many requests, in addition to offering the capability for more sophisticated users to fine-tune their requests according to the mix of available architectures. The system tends to run under its maximum capacity at all times so that there are not long wait times since the one thing that researchers want—timely (if not immediate) access to computational resources that run in the anticipated timeframe. And essentially, says Deumens, everyone is happy.

For some background, the HiPerGator system in its original incarnation (announced last year) offered up over 16,000 AMD “Abu Dhabi” cores with Dell underpinnings, a 2.88 petabyte Terascala-built Lustre-based system and Mellanox’s Infiniband throughout. They’ve since added an additional round of cores from pre-existing systems (both Intel and AMD), bringing their HPC core count to over 21,000. There is a set of nodes that provide a total of 80 GPUs in addition and more planned for the future—in addition to the possibility of Xeon Phi cores as well as they plan their build-out to be completed by this time next year. “There are always exceptions but most of our users don’t care what processor generation they’re running on. They just want to get their work done.” And all the while, his team keeps very careful track of what the users are looking for in terms of new or existing hardware and they use this information to tally what they ask vendors for during each year’s hardware and software buying cycles.

To put this in context, when the original HiPerGator emerged, there were a total of 8 GPUs available to researchers, which they bought simply to support the mission of a semester-long class that required them for special projects. However, once researchers at the university knew they were available, they began experimenting with porting codes, including AMBER on the molecular dynamics front. These development activities led the application teams to desire full production runs, which required more GPUs. And so their unexpected influx of GPU nodes occurred organically. This is the exact type of case that will feed how the next generation of their system develops—actual user interest means more “purchases” from researchers, but to keep their one main goal of providing solid resources without the wait times, they’ll make sure to supply ample nodes with whatever the research community seems to desire.

Deumens and team are taking those desires on the road in the next months. They’re currently in the midst of looking for vendors to help them supply the needs of HiPerGator 2, which again, is slated for this time next year. He gave us a sense of what works—and doesn’t—when it comes to supporting research at a university that wants to become a top tier research center based on its HPC capabilities.

First, he says, there are some successes in terms of their approach to scheduling. It used to be a manual process, but has been eased through their Moab and Torque engines. Further, he highlighted the increasing role of Galaxy, the open source scientific gateway project for creating, tracking and sharing scientific workflows that has taken off in the biosciences community. He also says that for a research center their size, the more cores they have available, the better. While some of their users can take advantage of their Infiniband fabric and run MPI or SMP jobs, in the end it’s all about getting up and running.

The other element that has worked for research teams at the University of Florida is having a stable, strong storage system like their Terascala solution, which is capable of handling massive data flows—an increasing problem for all scientific computing sites as data demands scramble to meet the computing capacity that is available.

What’s missing from their system is something that will be difficult for any of the vendors who supply the next iteration of the machine next year. And it’s something we’ve heard from much larger centers. There is a dramatic need to make a “super app” of sorts that turns a researcher’s desktop machine into a direct link to the supercomputing site, handling scheduling, data movement, and output in a seamless, portable interface. While this seems like it might be easy in this era of web-based interfaces for everything, it’s what’s really missing for centers designed around simply serving scientific users—and something that he and his team will continue to look toward in the coming years.

It was interesting to listen to the difference in concerns about power, performance and ease of access from the perspective of a much smaller HPC site than the top ten system managers we so often talk to. Power is always a concern, of course, but at smaller scale when exascale is something for the DoE and other government labs internationally to worry about, the problems of real-world daily operations boil down to one simple factor—make a supercomputer easy to use, quick to load into, and predictable in its time to result. A humbling reminder after so many conversations about eeking performance out of the hottest processors, largest systems and biggest power footprints on the planet.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This