How Outdated Infrastructure Will Cripple HPC

By Dr. Craig Finch

May 20, 2014

The raw compute power of HPC clusters continues to grow, driven by new parallel technologies such as many-core CPUs, GPUs, and the Xeon Phi. It is well known that writing applications to exploit massive parallelism is a significant challenge to the growth of HPC. Another challenge, which is not as widely discussed, is the increasing difficulty of managing HPC clusters. The way we approach the management and administration of high performance computing clusters is slowly strangling the field of HPC.

The practices that many HPC administrators use to manage users, operating systems, applications, and workloads have not kept pace with the growth of compute power and the size of the HPC user base. A UNIX system administrator from 1985 could step out of a time machine and go right to work managing most HPC clusters today. Because many clusters are not designed for manageability, a significant amount of an HPC administrator’s time is spent doing things that could be automated.

Administrative processes are often automated with ad hoc collections of scripts and cron jobs instead of standard tools. Management tools are often overlooked when a new cluster is built or purchased, especially in organizations that are new to HPC. Many new HPC admins start from scratch and re-invent the wheel. Tools exist to solve these problems, but few people in HPC are even aware of them. My work in commercial enterprise IT has produced a paradigm shift in the way that I view system administration. The administration of HPC clusters can be transformed by applying the thought processes and tools that are currently used in cutting-edge enterprise information technology.

The root of the problem is that we think about HPC clusters today largely in terms of raw performance (Tflops or core count), a one-dimensional metric that omits important information about a system. The Top500 ranking is an obvious example of our focus on performance. To move beyond the limits of this paradigm, a cluster should be evaluated on two dimensions: performance and systemic complexity. Factors that contribute to complexity include the diversity of hardware in the cluster, diversity of the user base, and diversity of applications that run on the cluster. I learned about these issues first-hand during the two years I spent as a system administrator of the STOKES HPC cluster at the University of Central Florida. I’ve talked to many HPC specialists from around the country, and I know these problems are not unique to my university.

In terms of raw power, STOKES is a modest HPC cluster with about 3400 compute cores. However, it is a very complex system that has grown and evolved since the first hardware was purchased in 2008. STOKES includes servers from two vendors with three generations of CPUs, GP-GPUs, Xeon Phis, three brands of Infiniband hardware, and four brands of Ethernet switches. STOKES serves over 150 active users who run high-throughput and high-performance applications in a dozen different fields of physical and social sciences and engineering. In contrast, HPC systems that are more powerful than STOKES actually may be less complex. For example, the National Oceanic and Atmospheric Administration (NOAA) has two 10,000 core, 213Tflop clusters that run “production” hurricane and weather models[1].

Finch_picThese twin systems, provided and managed by IBM, have homogeneous hardware, serve a single customer, and run a small collection of applications. Figure 1 on the left shows how performance and complexity can be visualized on a two-dimensional plot.

Hardware is one fundamental source of complexity. An HPC system which grows over the years may have servers from different manufacturers with different generations of processors and interconnect hardware. Some servers may require specific versions of an operating system or different drivers to accommodate certain hardware. As hardware diversity increases, different types of errors can occur, and monitoring becomes more complicated. The trend to include accelerator hardware, such as Xeon Phi cards and GP-GPUs, means that modern clusters are often diverse by design.

The diversity of the cluster’s user base is another major source of complexity. As HPC becomes more widely used, the user base will grow and become more diverse. While this is a sign of success for a general-purpose cluster, it leads to administrative challenges. User accounts need to be created and managed more often. There will be more requests for support, which will require more time and/or better tools for monitoring the cluster and diagnosing problems.

The diversity of applications that run on the cluster is another aspect of complexity that is often correlated with the diversity of the user base. More applications are supporting parallel processing “out of the box,” often in fields that have not traditionally used HPC. These applications often bring novice users to the cluster. They are used to a graphical desktop environment, and are unprepared for the command-line and script-based submission systems used on most clusters. “Legacy” users and applications pose a different challenge: they may depend upon specific versions of the operating system, compilers, and libraries. The user may be running a program built years ago by someone else who no longer works there, and the user may not know how to recompile it. The diversity of applications also complicates workload management. Some users run high-throughput computing applications with hundreds of single-core jobs, while others need to run a single massively parallel MPI job that consumes a significant fraction of the cluster.

Today, system administration is usually managed with the tools that were provided by the original cluster vendor. As the cluster grows, administration tools that were adequate in the beginning are no longer sufficient. System administrators gradually accumulate a collection written procedures, scripts, and cron jobs to patch the gaps in the administrative framework. This approach has significant disadvantages. The amount of labor spent on administration increases as the system outgrows its management tools. This is bad news for organizations that depend on research funding, which tends to provide “up front” funds but limited or no funding for follow-on maintenance. Custom in-house solutions are only “free” if your time is worth nothing. The reliability of the system will degrade over time, as more manual input is required to keep it running. Effective operation of the system will increasingly depend on the skill and knowledge of the local sysadmin.

The ad hoc approach to system administration is also bad for the field of HPC. Significant amounts of time are spent “re-inventing the wheel” as each department, company, or university acquires its first HPC cluster. This time is wasted in the sense that it could have been better spent on advancing the field of HPC. It also increases the difficulty of attracting and retaining personnel in the HPC field.

Fortunately, there is a better way to approach the administration of an HPC cluster. The growth of cloud computing and hyperscale data centers has driven the development of practices and tools for managing computing systems that are simply too large and complex to be managed economically using methods from the 1980s. Corporate IT departments and providers of web applications and services now manage nationwide networks of servers that rival the complexity of the largest supercomputers. At this scale, a system must be designed for management. Significant amounts of time and money can be saved if these practices and tools are applied to HPC clusters.

We need to start thinking about HPC cluster management as a framework that is built from components. Every cluster has a set of management components; each component may be a software tool, or it may be a manual process. Every HPC sysadmin is familiar with workload/resource management software. Other components of the management framework may not be so obvious. For example, your cluster does have an alerting component; it may be a software tool such as Nagios, or it may be getting emails and phone calls from users when their jobs crash. You can monitor a cluster with Ganglia, or you can log in to each node and run top. Every cluster has an administrative framework, and we need to make conscious decisions about how we are going to implement that framework.

When we do choose to automate a component of the management framework, we should commit to using industry-standard system management tools wherever possible. The more “standard” a system is, the less it will cost in the long run. It is much easier to hire staff to run a system that is built with industry-standard software tools. Unfortunately, many HPC system administrators are not familiar with the standard tools that are widely used in the enterprise IT space. HPC centers are often operated as “silos” within an organization, staffed by graduate students and faculty with backgrounds in research. Enterprise IT personnel seldom cross over into HPC, since they often lack the academic qualifications for “research” positions, and the pay in research organizations is often significantly lower than in corporate IT.

There is no “one-size-fits-all” solution to the problem of cluster management. Rather, the HPC community can advance the state of cluster administration by changing the way that we approach the subject. At a high level, those who are responsible for specifying, designing, and purchasing clusters need to start prioritizing system administration. A simple calculation of Tflops per dollar is no longer sufficient. A smaller cluster with a high degree of complexity will require a larger budget for administrative systems and configuration. The alternative is to pay for these costs down the road, when the inadequacy of the administrative tools becomes clear and “unexpected” system administration costs arise.

It is difficult to justify spending more money up-front for better management tools unless there has been an honest assessment of the cost of the cluster over its lifetime. When building or purchasing a cluster, the designer or vendor must be required to specify how the proposed cluster will implement each management component. It is important to understand that the decision “we’re not going to implement this component” usually means, “we’re going to do it manually.” That can be a valid choice, but we have to budget for the long-term cost. How will the cost change if the user count or core count increases by a factor of five over the next five years? Another option is to outsource certain functions that are not core to your mission. For example, the security aspect of many clusters is implicitly outsourced to a campus or corporate IT department, which operates a border firewall that protects the cluster from outside attacks.

In order to ask the right questions, decision makers must know what components are required to manage an HPC cluster. The HPC community can help by defining a set of standard cluster management components that will form an open specification for an HPC cluster. The exact set of components, and which components should be automated first, is open to debate. As a starting point for a broader discussion, I propose that the minimum core components required for any HPC cluster are identity management, workload management, and security. Another tier of components may be implemented manually on “personal” clusters, but become increasingly time-consuming as the number of users increases beyond the size of a small research group. These components include monitoring, alerting/notification, and configuration management. Finally, designing systems for reliability becomes critical for clusters that serve large numbers of users.

The HPC community can also help cluster designers and administrators choose standard system management tools. In order to take advantage of the ecosystem of enterprise IT management tools, HPC sysadmins need to know which tools are available, and they need information to help them choose the best tool for their needs. The open cluster specification can enumerate the most widely used tools that can be used to automate each component of a cluster. To help choose the right tool for a particular situation, the HPC community needs to publish more information about how we manage our clusters. We need to report which management tools we are using, why we are using them, and how well those tools are working for us. We also need to increase our contributions to open source projects, documentation, and standards so that other HPC sysadmins can benefit from our experience.

Commercial software, whether provided by a cluster vendor or a third-party vendor, is also an important part of cluster administration. However, even commercial tools need to “play nicely” with other software to enable a healthy HPC ecosystem. HPC-specific management tools need to offer better support for modern management features. For example, any tool that depends upon user identities should be able to authenticate against an identity server instead of requiring an administrator to create and maintain another unique identity for every user. Software tools should also be able to exchange data in a standard format (SNMP, JSON, XML, etc.) to enable centralized services such as monitoring and logging.

It’s time for the HPC community to start regarding system administration as a critical aspect of an HPC cluster. We can build better administrative frameworks by drawing on the strategies and tools developed for enterprise IT. Working together as a community, we can dramatically reduce the amount of time that is wasted on outdated, inefficient cluster management practices.

About the Author

Craig Finch is a Principal Consultant at Rootwork InfoTech LLC (http://www.rootwork.it/). Craig started his career as a design engineer in the wireless communications sector during the rapid growth period of the late 90′s. Growing bored with the evolutionary nature of wireless technology, the end of the tech bubble provided an occasion to take a break from industry and pursue a full-time PhD in Modeling and Simulation while performing research at the NanoScience Technology Center at the University of Central Florida (UCF). Craig developed predictive computational tools and used them to design optical biosensors, microfluidic devices, and functional tissue constructs. Following his PhD, he was responsible for STOKES, the core high performance computing cluster at UCF. Dr. Finch was a co-PI on several proposals, including a funded cyberinfrastructure grant from the National Science Foundation. On the side, Craig has worked as a concert lighting designer, wrote a technical book (Sage Beginners Guide), and held leadership positions in volunteer organizations.

[1] http://www.ncep.noaa.gov/newsletter/october2012/printable.shtml

[1]http://www.noaanews.noaa.gov/stories2013/2013029_supercomputers.html

 

 

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scientists Conduct First Quantum Simulation of Atomic Nucleus

May 23, 2018

OAK RIDGE, Tenn., May 23, 2018—Scientists at the Department of Energy’s Oak Ridge National Laboratory are the first to successfully simulate an atomic nucleus using a quantum computer. The results, published in Ph Read more…

By Rachel Harken, ORNL

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Francisco, one would be tempted to dismiss its claims of inventing Read more…

By John Russell

Intel, Micro Debut Quad-Level Cell NAND Flash

May 22, 2018

Chipmakers continue to gear designs toward AI and other demanding cloud workloads that take advantage of datacenter flash storage capacity. To that end, memory specialist Micron Technology Inc. began shipping compact sol Read more…

By George Leopold

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combined peak computing capacity, the new systems will extend the a Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

US Forms AI Brain Trust

May 11, 2018

Amid calls for a U.S. strategy for promoting AI development, the Trump administration is forming a senior-level panel to help coordinate government and industry research efforts. The Select Committee on Artificial Intelligence was announced Thursday (May 10) during a White House summit organized by the Office of Science and Technology Policy (OSTP). Read more…

By George Leopold

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This