How Outdated Infrastructure Will Cripple HPC

By Dr. Craig Finch

May 20, 2014

The raw compute power of HPC clusters continues to grow, driven by new parallel technologies such as many-core CPUs, GPUs, and the Xeon Phi. It is well known that writing applications to exploit massive parallelism is a significant challenge to the growth of HPC. Another challenge, which is not as widely discussed, is the increasing difficulty of managing HPC clusters. The way we approach the management and administration of high performance computing clusters is slowly strangling the field of HPC.

The practices that many HPC administrators use to manage users, operating systems, applications, and workloads have not kept pace with the growth of compute power and the size of the HPC user base. A UNIX system administrator from 1985 could step out of a time machine and go right to work managing most HPC clusters today. Because many clusters are not designed for manageability, a significant amount of an HPC administrator’s time is spent doing things that could be automated.

Administrative processes are often automated with ad hoc collections of scripts and cron jobs instead of standard tools. Management tools are often overlooked when a new cluster is built or purchased, especially in organizations that are new to HPC. Many new HPC admins start from scratch and re-invent the wheel. Tools exist to solve these problems, but few people in HPC are even aware of them. My work in commercial enterprise IT has produced a paradigm shift in the way that I view system administration. The administration of HPC clusters can be transformed by applying the thought processes and tools that are currently used in cutting-edge enterprise information technology.

The root of the problem is that we think about HPC clusters today largely in terms of raw performance (Tflops or core count), a one-dimensional metric that omits important information about a system. The Top500 ranking is an obvious example of our focus on performance. To move beyond the limits of this paradigm, a cluster should be evaluated on two dimensions: performance and systemic complexity. Factors that contribute to complexity include the diversity of hardware in the cluster, diversity of the user base, and diversity of applications that run on the cluster. I learned about these issues first-hand during the two years I spent as a system administrator of the STOKES HPC cluster at the University of Central Florida. I’ve talked to many HPC specialists from around the country, and I know these problems are not unique to my university.

In terms of raw power, STOKES is a modest HPC cluster with about 3400 compute cores. However, it is a very complex system that has grown and evolved since the first hardware was purchased in 2008. STOKES includes servers from two vendors with three generations of CPUs, GP-GPUs, Xeon Phis, three brands of Infiniband hardware, and four brands of Ethernet switches. STOKES serves over 150 active users who run high-throughput and high-performance applications in a dozen different fields of physical and social sciences and engineering. In contrast, HPC systems that are more powerful than STOKES actually may be less complex. For example, the National Oceanic and Atmospheric Administration (NOAA) has two 10,000 core, 213Tflop clusters that run “production” hurricane and weather models[1].

Finch_picThese twin systems, provided and managed by IBM, have homogeneous hardware, serve a single customer, and run a small collection of applications. Figure 1 on the left shows how performance and complexity can be visualized on a two-dimensional plot.

Hardware is one fundamental source of complexity. An HPC system which grows over the years may have servers from different manufacturers with different generations of processors and interconnect hardware. Some servers may require specific versions of an operating system or different drivers to accommodate certain hardware. As hardware diversity increases, different types of errors can occur, and monitoring becomes more complicated. The trend to include accelerator hardware, such as Xeon Phi cards and GP-GPUs, means that modern clusters are often diverse by design.

The diversity of the cluster’s user base is another major source of complexity. As HPC becomes more widely used, the user base will grow and become more diverse. While this is a sign of success for a general-purpose cluster, it leads to administrative challenges. User accounts need to be created and managed more often. There will be more requests for support, which will require more time and/or better tools for monitoring the cluster and diagnosing problems.

The diversity of applications that run on the cluster is another aspect of complexity that is often correlated with the diversity of the user base. More applications are supporting parallel processing “out of the box,” often in fields that have not traditionally used HPC. These applications often bring novice users to the cluster. They are used to a graphical desktop environment, and are unprepared for the command-line and script-based submission systems used on most clusters. “Legacy” users and applications pose a different challenge: they may depend upon specific versions of the operating system, compilers, and libraries. The user may be running a program built years ago by someone else who no longer works there, and the user may not know how to recompile it. The diversity of applications also complicates workload management. Some users run high-throughput computing applications with hundreds of single-core jobs, while others need to run a single massively parallel MPI job that consumes a significant fraction of the cluster.

Today, system administration is usually managed with the tools that were provided by the original cluster vendor. As the cluster grows, administration tools that were adequate in the beginning are no longer sufficient. System administrators gradually accumulate a collection written procedures, scripts, and cron jobs to patch the gaps in the administrative framework. This approach has significant disadvantages. The amount of labor spent on administration increases as the system outgrows its management tools. This is bad news for organizations that depend on research funding, which tends to provide “up front” funds but limited or no funding for follow-on maintenance. Custom in-house solutions are only “free” if your time is worth nothing. The reliability of the system will degrade over time, as more manual input is required to keep it running. Effective operation of the system will increasingly depend on the skill and knowledge of the local sysadmin.

The ad hoc approach to system administration is also bad for the field of HPC. Significant amounts of time are spent “re-inventing the wheel” as each department, company, or university acquires its first HPC cluster. This time is wasted in the sense that it could have been better spent on advancing the field of HPC. It also increases the difficulty of attracting and retaining personnel in the HPC field.

Fortunately, there is a better way to approach the administration of an HPC cluster. The growth of cloud computing and hyperscale data centers has driven the development of practices and tools for managing computing systems that are simply too large and complex to be managed economically using methods from the 1980s. Corporate IT departments and providers of web applications and services now manage nationwide networks of servers that rival the complexity of the largest supercomputers. At this scale, a system must be designed for management. Significant amounts of time and money can be saved if these practices and tools are applied to HPC clusters.

We need to start thinking about HPC cluster management as a framework that is built from components. Every cluster has a set of management components; each component may be a software tool, or it may be a manual process. Every HPC sysadmin is familiar with workload/resource management software. Other components of the management framework may not be so obvious. For example, your cluster does have an alerting component; it may be a software tool such as Nagios, or it may be getting emails and phone calls from users when their jobs crash. You can monitor a cluster with Ganglia, or you can log in to each node and run top. Every cluster has an administrative framework, and we need to make conscious decisions about how we are going to implement that framework.

When we do choose to automate a component of the management framework, we should commit to using industry-standard system management tools wherever possible. The more “standard” a system is, the less it will cost in the long run. It is much easier to hire staff to run a system that is built with industry-standard software tools. Unfortunately, many HPC system administrators are not familiar with the standard tools that are widely used in the enterprise IT space. HPC centers are often operated as “silos” within an organization, staffed by graduate students and faculty with backgrounds in research. Enterprise IT personnel seldom cross over into HPC, since they often lack the academic qualifications for “research” positions, and the pay in research organizations is often significantly lower than in corporate IT.

There is no “one-size-fits-all” solution to the problem of cluster management. Rather, the HPC community can advance the state of cluster administration by changing the way that we approach the subject. At a high level, those who are responsible for specifying, designing, and purchasing clusters need to start prioritizing system administration. A simple calculation of Tflops per dollar is no longer sufficient. A smaller cluster with a high degree of complexity will require a larger budget for administrative systems and configuration. The alternative is to pay for these costs down the road, when the inadequacy of the administrative tools becomes clear and “unexpected” system administration costs arise.

It is difficult to justify spending more money up-front for better management tools unless there has been an honest assessment of the cost of the cluster over its lifetime. When building or purchasing a cluster, the designer or vendor must be required to specify how the proposed cluster will implement each management component. It is important to understand that the decision “we’re not going to implement this component” usually means, “we’re going to do it manually.” That can be a valid choice, but we have to budget for the long-term cost. How will the cost change if the user count or core count increases by a factor of five over the next five years? Another option is to outsource certain functions that are not core to your mission. For example, the security aspect of many clusters is implicitly outsourced to a campus or corporate IT department, which operates a border firewall that protects the cluster from outside attacks.

In order to ask the right questions, decision makers must know what components are required to manage an HPC cluster. The HPC community can help by defining a set of standard cluster management components that will form an open specification for an HPC cluster. The exact set of components, and which components should be automated first, is open to debate. As a starting point for a broader discussion, I propose that the minimum core components required for any HPC cluster are identity management, workload management, and security. Another tier of components may be implemented manually on “personal” clusters, but become increasingly time-consuming as the number of users increases beyond the size of a small research group. These components include monitoring, alerting/notification, and configuration management. Finally, designing systems for reliability becomes critical for clusters that serve large numbers of users.

The HPC community can also help cluster designers and administrators choose standard system management tools. In order to take advantage of the ecosystem of enterprise IT management tools, HPC sysadmins need to know which tools are available, and they need information to help them choose the best tool for their needs. The open cluster specification can enumerate the most widely used tools that can be used to automate each component of a cluster. To help choose the right tool for a particular situation, the HPC community needs to publish more information about how we manage our clusters. We need to report which management tools we are using, why we are using them, and how well those tools are working for us. We also need to increase our contributions to open source projects, documentation, and standards so that other HPC sysadmins can benefit from our experience.

Commercial software, whether provided by a cluster vendor or a third-party vendor, is also an important part of cluster administration. However, even commercial tools need to “play nicely” with other software to enable a healthy HPC ecosystem. HPC-specific management tools need to offer better support for modern management features. For example, any tool that depends upon user identities should be able to authenticate against an identity server instead of requiring an administrator to create and maintain another unique identity for every user. Software tools should also be able to exchange data in a standard format (SNMP, JSON, XML, etc.) to enable centralized services such as monitoring and logging.

It’s time for the HPC community to start regarding system administration as a critical aspect of an HPC cluster. We can build better administrative frameworks by drawing on the strategies and tools developed for enterprise IT. Working together as a community, we can dramatically reduce the amount of time that is wasted on outdated, inefficient cluster management practices.

About the Author

Craig Finch is a Principal Consultant at Rootwork InfoTech LLC (http://www.rootwork.it/). Craig started his career as a design engineer in the wireless communications sector during the rapid growth period of the late 90′s. Growing bored with the evolutionary nature of wireless technology, the end of the tech bubble provided an occasion to take a break from industry and pursue a full-time PhD in Modeling and Simulation while performing research at the NanoScience Technology Center at the University of Central Florida (UCF). Craig developed predictive computational tools and used them to design optical biosensors, microfluidic devices, and functional tissue constructs. Following his PhD, he was responsible for STOKES, the core high performance computing cluster at UCF. Dr. Finch was a co-PI on several proposals, including a funded cyberinfrastructure grant from the National Science Foundation. On the side, Craig has worked as a concert lighting designer, wrote a technical book (Sage Beginners Guide), and held leadership positions in volunteer organizations.

[1] http://www.ncep.noaa.gov/newsletter/october2012/printable.shtml

[1]http://www.noaanews.noaa.gov/stories2013/2013029_supercomputers.html

 

 

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputer Simulations Validate NASA Crash Testing

February 17, 2020

Car crash simulation is already a challenging supercomputing task, requiring pinpoint estimation of how hundreds of components interact with turbulent forces and human bodies. Spacecraft crash simulation is far more diff Read more…

By Oliver Peckham

What’s New in HPC Research: Quantum Clouds, Interatomic Models, Genetic Algorithms & More

February 14, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

The Massive GPU Cloudburst Experiment Plays a Smaller, More Productive Encore

February 13, 2020

In November, researchers at the San Diego Supercomputer Center (SDSC) and the IceCube Particle Astrophysics Center (WIPAC) set out to break the internet – or at least, pull off the cloud HPC equivalent. As part of thei Read more…

By Oliver Peckham

ORNL Team Develops AI-based Cancer Text Mining Tool on Summit

February 13, 2020

A group of Oak Ridge National Laboratory researchers working on the Summit supercomputer has developed a new neural network tool for fast extraction of information from cancer pathology reports to speed research and clin Read more…

By John Russell

Nature Serves up Another Challenge to Quantum Computing?

February 13, 2020

Just when you thought it was safe to assume quantum computing – though distant – would eventually succumb to clever technology, another potentially confounding factor pops up. It’s the Heisenberg Limit (HL), close Read more…

By John Russell

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

Researchers Enlist Three Supercomputers to Apply Deep Learning to Extreme Weather

February 12, 2020

When it comes to extreme weather, an errant forecast can have serious effects. While advance warning can give people time to prepare for the weather as it did with the polar vortex last year, the absence of accurate adva Read more…

By Oliver Peckham

The Massive GPU Cloudburst Experiment Plays a Smaller, More Productive Encore

February 13, 2020

In November, researchers at the San Diego Supercomputer Center (SDSC) and the IceCube Particle Astrophysics Center (WIPAC) set out to break the internet – or Read more…

By Oliver Peckham

Eni to Retake Industry HPC Crown with Launch of HPC5

February 12, 2020

With the launch of its Dell-built HPC5 system, Italian energy company Eni regains its position atop the industrial supercomputing leaderboard. At 52-petaflops p Read more…

By Tiffany Trader

Trump Budget Proposal Again Slashes Science Spending

February 11, 2020

President Donald Trump’s FY2021 U.S. Budget, submitted to Congress this week, again slashes science spending. It’s a $4.8 trillion statement of priorities, Read more…

By John Russell

Policy: Republicans Eye Bigger Science Budgets; NSF Celebrates 70th, Names Idea Machine Winners

February 5, 2020

It’s a busy week for science policy. Yesterday, the National Science Foundation announced winners of its 2026 Idea Machine contest seeking directions for futu Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Intel Stopping Nervana Development to Focus on Habana AI Chips

February 3, 2020

Just two months after acquiring Israeli AI chip start-up Habana Labs for $2 billion, Intel is stopping development of its existing Nervana neural network proces Read more…

By John Russell

Lise Supercomputer, Part of HLRN-IV, Begins Operations

January 29, 2020

The second phase of the build-out of HLRN-IV – the planned 16 peak-petaflops supercomputer serving the North-German Supercomputing Alliance (HLRN) – is unde Read more…

By Staff report

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This