How Outdated Infrastructure Will Cripple HPC

By Dr. Craig Finch

May 20, 2014

The raw compute power of HPC clusters continues to grow, driven by new parallel technologies such as many-core CPUs, GPUs, and the Xeon Phi. It is well known that writing applications to exploit massive parallelism is a significant challenge to the growth of HPC. Another challenge, which is not as widely discussed, is the increasing difficulty of managing HPC clusters. The way we approach the management and administration of high performance computing clusters is slowly strangling the field of HPC.

The practices that many HPC administrators use to manage users, operating systems, applications, and workloads have not kept pace with the growth of compute power and the size of the HPC user base. A UNIX system administrator from 1985 could step out of a time machine and go right to work managing most HPC clusters today. Because many clusters are not designed for manageability, a significant amount of an HPC administrator’s time is spent doing things that could be automated.

Administrative processes are often automated with ad hoc collections of scripts and cron jobs instead of standard tools. Management tools are often overlooked when a new cluster is built or purchased, especially in organizations that are new to HPC. Many new HPC admins start from scratch and re-invent the wheel. Tools exist to solve these problems, but few people in HPC are even aware of them. My work in commercial enterprise IT has produced a paradigm shift in the way that I view system administration. The administration of HPC clusters can be transformed by applying the thought processes and tools that are currently used in cutting-edge enterprise information technology.

The root of the problem is that we think about HPC clusters today largely in terms of raw performance (Tflops or core count), a one-dimensional metric that omits important information about a system. The Top500 ranking is an obvious example of our focus on performance. To move beyond the limits of this paradigm, a cluster should be evaluated on two dimensions: performance and systemic complexity. Factors that contribute to complexity include the diversity of hardware in the cluster, diversity of the user base, and diversity of applications that run on the cluster. I learned about these issues first-hand during the two years I spent as a system administrator of the STOKES HPC cluster at the University of Central Florida. I’ve talked to many HPC specialists from around the country, and I know these problems are not unique to my university.

In terms of raw power, STOKES is a modest HPC cluster with about 3400 compute cores. However, it is a very complex system that has grown and evolved since the first hardware was purchased in 2008. STOKES includes servers from two vendors with three generations of CPUs, GP-GPUs, Xeon Phis, three brands of Infiniband hardware, and four brands of Ethernet switches. STOKES serves over 150 active users who run high-throughput and high-performance applications in a dozen different fields of physical and social sciences and engineering. In contrast, HPC systems that are more powerful than STOKES actually may be less complex. For example, the National Oceanic and Atmospheric Administration (NOAA) has two 10,000 core, 213Tflop clusters that run “production” hurricane and weather models[1].

Finch_picThese twin systems, provided and managed by IBM, have homogeneous hardware, serve a single customer, and run a small collection of applications. Figure 1 on the left shows how performance and complexity can be visualized on a two-dimensional plot.

Hardware is one fundamental source of complexity. An HPC system which grows over the years may have servers from different manufacturers with different generations of processors and interconnect hardware. Some servers may require specific versions of an operating system or different drivers to accommodate certain hardware. As hardware diversity increases, different types of errors can occur, and monitoring becomes more complicated. The trend to include accelerator hardware, such as Xeon Phi cards and GP-GPUs, means that modern clusters are often diverse by design.

The diversity of the cluster’s user base is another major source of complexity. As HPC becomes more widely used, the user base will grow and become more diverse. While this is a sign of success for a general-purpose cluster, it leads to administrative challenges. User accounts need to be created and managed more often. There will be more requests for support, which will require more time and/or better tools for monitoring the cluster and diagnosing problems.

The diversity of applications that run on the cluster is another aspect of complexity that is often correlated with the diversity of the user base. More applications are supporting parallel processing “out of the box,” often in fields that have not traditionally used HPC. These applications often bring novice users to the cluster. They are used to a graphical desktop environment, and are unprepared for the command-line and script-based submission systems used on most clusters. “Legacy” users and applications pose a different challenge: they may depend upon specific versions of the operating system, compilers, and libraries. The user may be running a program built years ago by someone else who no longer works there, and the user may not know how to recompile it. The diversity of applications also complicates workload management. Some users run high-throughput computing applications with hundreds of single-core jobs, while others need to run a single massively parallel MPI job that consumes a significant fraction of the cluster.

Today, system administration is usually managed with the tools that were provided by the original cluster vendor. As the cluster grows, administration tools that were adequate in the beginning are no longer sufficient. System administrators gradually accumulate a collection written procedures, scripts, and cron jobs to patch the gaps in the administrative framework. This approach has significant disadvantages. The amount of labor spent on administration increases as the system outgrows its management tools. This is bad news for organizations that depend on research funding, which tends to provide “up front” funds but limited or no funding for follow-on maintenance. Custom in-house solutions are only “free” if your time is worth nothing. The reliability of the system will degrade over time, as more manual input is required to keep it running. Effective operation of the system will increasingly depend on the skill and knowledge of the local sysadmin.

The ad hoc approach to system administration is also bad for the field of HPC. Significant amounts of time are spent “re-inventing the wheel” as each department, company, or university acquires its first HPC cluster. This time is wasted in the sense that it could have been better spent on advancing the field of HPC. It also increases the difficulty of attracting and retaining personnel in the HPC field.

Fortunately, there is a better way to approach the administration of an HPC cluster. The growth of cloud computing and hyperscale data centers has driven the development of practices and tools for managing computing systems that are simply too large and complex to be managed economically using methods from the 1980s. Corporate IT departments and providers of web applications and services now manage nationwide networks of servers that rival the complexity of the largest supercomputers. At this scale, a system must be designed for management. Significant amounts of time and money can be saved if these practices and tools are applied to HPC clusters.

We need to start thinking about HPC cluster management as a framework that is built from components. Every cluster has a set of management components; each component may be a software tool, or it may be a manual process. Every HPC sysadmin is familiar with workload/resource management software. Other components of the management framework may not be so obvious. For example, your cluster does have an alerting component; it may be a software tool such as Nagios, or it may be getting emails and phone calls from users when their jobs crash. You can monitor a cluster with Ganglia, or you can log in to each node and run top. Every cluster has an administrative framework, and we need to make conscious decisions about how we are going to implement that framework.

When we do choose to automate a component of the management framework, we should commit to using industry-standard system management tools wherever possible. The more “standard” a system is, the less it will cost in the long run. It is much easier to hire staff to run a system that is built with industry-standard software tools. Unfortunately, many HPC system administrators are not familiar with the standard tools that are widely used in the enterprise IT space. HPC centers are often operated as “silos” within an organization, staffed by graduate students and faculty with backgrounds in research. Enterprise IT personnel seldom cross over into HPC, since they often lack the academic qualifications for “research” positions, and the pay in research organizations is often significantly lower than in corporate IT.

There is no “one-size-fits-all” solution to the problem of cluster management. Rather, the HPC community can advance the state of cluster administration by changing the way that we approach the subject. At a high level, those who are responsible for specifying, designing, and purchasing clusters need to start prioritizing system administration. A simple calculation of Tflops per dollar is no longer sufficient. A smaller cluster with a high degree of complexity will require a larger budget for administrative systems and configuration. The alternative is to pay for these costs down the road, when the inadequacy of the administrative tools becomes clear and “unexpected” system administration costs arise.

It is difficult to justify spending more money up-front for better management tools unless there has been an honest assessment of the cost of the cluster over its lifetime. When building or purchasing a cluster, the designer or vendor must be required to specify how the proposed cluster will implement each management component. It is important to understand that the decision “we’re not going to implement this component” usually means, “we’re going to do it manually.” That can be a valid choice, but we have to budget for the long-term cost. How will the cost change if the user count or core count increases by a factor of five over the next five years? Another option is to outsource certain functions that are not core to your mission. For example, the security aspect of many clusters is implicitly outsourced to a campus or corporate IT department, which operates a border firewall that protects the cluster from outside attacks.

In order to ask the right questions, decision makers must know what components are required to manage an HPC cluster. The HPC community can help by defining a set of standard cluster management components that will form an open specification for an HPC cluster. The exact set of components, and which components should be automated first, is open to debate. As a starting point for a broader discussion, I propose that the minimum core components required for any HPC cluster are identity management, workload management, and security. Another tier of components may be implemented manually on “personal” clusters, but become increasingly time-consuming as the number of users increases beyond the size of a small research group. These components include monitoring, alerting/notification, and configuration management. Finally, designing systems for reliability becomes critical for clusters that serve large numbers of users.

The HPC community can also help cluster designers and administrators choose standard system management tools. In order to take advantage of the ecosystem of enterprise IT management tools, HPC sysadmins need to know which tools are available, and they need information to help them choose the best tool for their needs. The open cluster specification can enumerate the most widely used tools that can be used to automate each component of a cluster. To help choose the right tool for a particular situation, the HPC community needs to publish more information about how we manage our clusters. We need to report which management tools we are using, why we are using them, and how well those tools are working for us. We also need to increase our contributions to open source projects, documentation, and standards so that other HPC sysadmins can benefit from our experience.

Commercial software, whether provided by a cluster vendor or a third-party vendor, is also an important part of cluster administration. However, even commercial tools need to “play nicely” with other software to enable a healthy HPC ecosystem. HPC-specific management tools need to offer better support for modern management features. For example, any tool that depends upon user identities should be able to authenticate against an identity server instead of requiring an administrator to create and maintain another unique identity for every user. Software tools should also be able to exchange data in a standard format (SNMP, JSON, XML, etc.) to enable centralized services such as monitoring and logging.

It’s time for the HPC community to start regarding system administration as a critical aspect of an HPC cluster. We can build better administrative frameworks by drawing on the strategies and tools developed for enterprise IT. Working together as a community, we can dramatically reduce the amount of time that is wasted on outdated, inefficient cluster management practices.

About the Author

Craig Finch is a Principal Consultant at Rootwork InfoTech LLC (http://www.rootwork.it/). Craig started his career as a design engineer in the wireless communications sector during the rapid growth period of the late 90′s. Growing bored with the evolutionary nature of wireless technology, the end of the tech bubble provided an occasion to take a break from industry and pursue a full-time PhD in Modeling and Simulation while performing research at the NanoScience Technology Center at the University of Central Florida (UCF). Craig developed predictive computational tools and used them to design optical biosensors, microfluidic devices, and functional tissue constructs. Following his PhD, he was responsible for STOKES, the core high performance computing cluster at UCF. Dr. Finch was a co-PI on several proposals, including a funded cyberinfrastructure grant from the National Science Foundation. On the side, Craig has worked as a concert lighting designer, wrote a technical book (Sage Beginners Guide), and held leadership positions in volunteer organizations.

[1] http://www.ncep.noaa.gov/newsletter/october2012/printable.shtml

[1]http://www.noaanews.noaa.gov/stories2013/2013029_supercomputers.html

 

 

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This