How Outdated Infrastructure Will Cripple HPC

By Dr. Craig Finch

May 20, 2014

The raw compute power of HPC clusters continues to grow, driven by new parallel technologies such as many-core CPUs, GPUs, and the Xeon Phi. It is well known that writing applications to exploit massive parallelism is a significant challenge to the growth of HPC. Another challenge, which is not as widely discussed, is the increasing difficulty of managing HPC clusters. The way we approach the management and administration of high performance computing clusters is slowly strangling the field of HPC.

The practices that many HPC administrators use to manage users, operating systems, applications, and workloads have not kept pace with the growth of compute power and the size of the HPC user base. A UNIX system administrator from 1985 could step out of a time machine and go right to work managing most HPC clusters today. Because many clusters are not designed for manageability, a significant amount of an HPC administrator’s time is spent doing things that could be automated.

Administrative processes are often automated with ad hoc collections of scripts and cron jobs instead of standard tools. Management tools are often overlooked when a new cluster is built or purchased, especially in organizations that are new to HPC. Many new HPC admins start from scratch and re-invent the wheel. Tools exist to solve these problems, but few people in HPC are even aware of them. My work in commercial enterprise IT has produced a paradigm shift in the way that I view system administration. The administration of HPC clusters can be transformed by applying the thought processes and tools that are currently used in cutting-edge enterprise information technology.

The root of the problem is that we think about HPC clusters today largely in terms of raw performance (Tflops or core count), a one-dimensional metric that omits important information about a system. The Top500 ranking is an obvious example of our focus on performance. To move beyond the limits of this paradigm, a cluster should be evaluated on two dimensions: performance and systemic complexity. Factors that contribute to complexity include the diversity of hardware in the cluster, diversity of the user base, and diversity of applications that run on the cluster. I learned about these issues first-hand during the two years I spent as a system administrator of the STOKES HPC cluster at the University of Central Florida. I’ve talked to many HPC specialists from around the country, and I know these problems are not unique to my university.

In terms of raw power, STOKES is a modest HPC cluster with about 3400 compute cores. However, it is a very complex system that has grown and evolved since the first hardware was purchased in 2008. STOKES includes servers from two vendors with three generations of CPUs, GP-GPUs, Xeon Phis, three brands of Infiniband hardware, and four brands of Ethernet switches. STOKES serves over 150 active users who run high-throughput and high-performance applications in a dozen different fields of physical and social sciences and engineering. In contrast, HPC systems that are more powerful than STOKES actually may be less complex. For example, the National Oceanic and Atmospheric Administration (NOAA) has two 10,000 core, 213Tflop clusters that run “production” hurricane and weather models[1].

Finch_picThese twin systems, provided and managed by IBM, have homogeneous hardware, serve a single customer, and run a small collection of applications. Figure 1 on the left shows how performance and complexity can be visualized on a two-dimensional plot.

Hardware is one fundamental source of complexity. An HPC system which grows over the years may have servers from different manufacturers with different generations of processors and interconnect hardware. Some servers may require specific versions of an operating system or different drivers to accommodate certain hardware. As hardware diversity increases, different types of errors can occur, and monitoring becomes more complicated. The trend to include accelerator hardware, such as Xeon Phi cards and GP-GPUs, means that modern clusters are often diverse by design.

The diversity of the cluster’s user base is another major source of complexity. As HPC becomes more widely used, the user base will grow and become more diverse. While this is a sign of success for a general-purpose cluster, it leads to administrative challenges. User accounts need to be created and managed more often. There will be more requests for support, which will require more time and/or better tools for monitoring the cluster and diagnosing problems.

The diversity of applications that run on the cluster is another aspect of complexity that is often correlated with the diversity of the user base. More applications are supporting parallel processing “out of the box,” often in fields that have not traditionally used HPC. These applications often bring novice users to the cluster. They are used to a graphical desktop environment, and are unprepared for the command-line and script-based submission systems used on most clusters. “Legacy” users and applications pose a different challenge: they may depend upon specific versions of the operating system, compilers, and libraries. The user may be running a program built years ago by someone else who no longer works there, and the user may not know how to recompile it. The diversity of applications also complicates workload management. Some users run high-throughput computing applications with hundreds of single-core jobs, while others need to run a single massively parallel MPI job that consumes a significant fraction of the cluster.

Today, system administration is usually managed with the tools that were provided by the original cluster vendor. As the cluster grows, administration tools that were adequate in the beginning are no longer sufficient. System administrators gradually accumulate a collection written procedures, scripts, and cron jobs to patch the gaps in the administrative framework. This approach has significant disadvantages. The amount of labor spent on administration increases as the system outgrows its management tools. This is bad news for organizations that depend on research funding, which tends to provide “up front” funds but limited or no funding for follow-on maintenance. Custom in-house solutions are only “free” if your time is worth nothing. The reliability of the system will degrade over time, as more manual input is required to keep it running. Effective operation of the system will increasingly depend on the skill and knowledge of the local sysadmin.

The ad hoc approach to system administration is also bad for the field of HPC. Significant amounts of time are spent “re-inventing the wheel” as each department, company, or university acquires its first HPC cluster. This time is wasted in the sense that it could have been better spent on advancing the field of HPC. It also increases the difficulty of attracting and retaining personnel in the HPC field.

Fortunately, there is a better way to approach the administration of an HPC cluster. The growth of cloud computing and hyperscale data centers has driven the development of practices and tools for managing computing systems that are simply too large and complex to be managed economically using methods from the 1980s. Corporate IT departments and providers of web applications and services now manage nationwide networks of servers that rival the complexity of the largest supercomputers. At this scale, a system must be designed for management. Significant amounts of time and money can be saved if these practices and tools are applied to HPC clusters.

We need to start thinking about HPC cluster management as a framework that is built from components. Every cluster has a set of management components; each component may be a software tool, or it may be a manual process. Every HPC sysadmin is familiar with workload/resource management software. Other components of the management framework may not be so obvious. For example, your cluster does have an alerting component; it may be a software tool such as Nagios, or it may be getting emails and phone calls from users when their jobs crash. You can monitor a cluster with Ganglia, or you can log in to each node and run top. Every cluster has an administrative framework, and we need to make conscious decisions about how we are going to implement that framework.

When we do choose to automate a component of the management framework, we should commit to using industry-standard system management tools wherever possible. The more “standard” a system is, the less it will cost in the long run. It is much easier to hire staff to run a system that is built with industry-standard software tools. Unfortunately, many HPC system administrators are not familiar with the standard tools that are widely used in the enterprise IT space. HPC centers are often operated as “silos” within an organization, staffed by graduate students and faculty with backgrounds in research. Enterprise IT personnel seldom cross over into HPC, since they often lack the academic qualifications for “research” positions, and the pay in research organizations is often significantly lower than in corporate IT.

There is no “one-size-fits-all” solution to the problem of cluster management. Rather, the HPC community can advance the state of cluster administration by changing the way that we approach the subject. At a high level, those who are responsible for specifying, designing, and purchasing clusters need to start prioritizing system administration. A simple calculation of Tflops per dollar is no longer sufficient. A smaller cluster with a high degree of complexity will require a larger budget for administrative systems and configuration. The alternative is to pay for these costs down the road, when the inadequacy of the administrative tools becomes clear and “unexpected” system administration costs arise.

It is difficult to justify spending more money up-front for better management tools unless there has been an honest assessment of the cost of the cluster over its lifetime. When building or purchasing a cluster, the designer or vendor must be required to specify how the proposed cluster will implement each management component. It is important to understand that the decision “we’re not going to implement this component” usually means, “we’re going to do it manually.” That can be a valid choice, but we have to budget for the long-term cost. How will the cost change if the user count or core count increases by a factor of five over the next five years? Another option is to outsource certain functions that are not core to your mission. For example, the security aspect of many clusters is implicitly outsourced to a campus or corporate IT department, which operates a border firewall that protects the cluster from outside attacks.

In order to ask the right questions, decision makers must know what components are required to manage an HPC cluster. The HPC community can help by defining a set of standard cluster management components that will form an open specification for an HPC cluster. The exact set of components, and which components should be automated first, is open to debate. As a starting point for a broader discussion, I propose that the minimum core components required for any HPC cluster are identity management, workload management, and security. Another tier of components may be implemented manually on “personal” clusters, but become increasingly time-consuming as the number of users increases beyond the size of a small research group. These components include monitoring, alerting/notification, and configuration management. Finally, designing systems for reliability becomes critical for clusters that serve large numbers of users.

The HPC community can also help cluster designers and administrators choose standard system management tools. In order to take advantage of the ecosystem of enterprise IT management tools, HPC sysadmins need to know which tools are available, and they need information to help them choose the best tool for their needs. The open cluster specification can enumerate the most widely used tools that can be used to automate each component of a cluster. To help choose the right tool for a particular situation, the HPC community needs to publish more information about how we manage our clusters. We need to report which management tools we are using, why we are using them, and how well those tools are working for us. We also need to increase our contributions to open source projects, documentation, and standards so that other HPC sysadmins can benefit from our experience.

Commercial software, whether provided by a cluster vendor or a third-party vendor, is also an important part of cluster administration. However, even commercial tools need to “play nicely” with other software to enable a healthy HPC ecosystem. HPC-specific management tools need to offer better support for modern management features. For example, any tool that depends upon user identities should be able to authenticate against an identity server instead of requiring an administrator to create and maintain another unique identity for every user. Software tools should also be able to exchange data in a standard format (SNMP, JSON, XML, etc.) to enable centralized services such as monitoring and logging.

It’s time for the HPC community to start regarding system administration as a critical aspect of an HPC cluster. We can build better administrative frameworks by drawing on the strategies and tools developed for enterprise IT. Working together as a community, we can dramatically reduce the amount of time that is wasted on outdated, inefficient cluster management practices.

About the Author

Craig Finch is a Principal Consultant at Rootwork InfoTech LLC (http://www.rootwork.it/). Craig started his career as a design engineer in the wireless communications sector during the rapid growth period of the late 90′s. Growing bored with the evolutionary nature of wireless technology, the end of the tech bubble provided an occasion to take a break from industry and pursue a full-time PhD in Modeling and Simulation while performing research at the NanoScience Technology Center at the University of Central Florida (UCF). Craig developed predictive computational tools and used them to design optical biosensors, microfluidic devices, and functional tissue constructs. Following his PhD, he was responsible for STOKES, the core high performance computing cluster at UCF. Dr. Finch was a co-PI on several proposals, including a funded cyberinfrastructure grant from the National Science Foundation. On the side, Craig has worked as a concert lighting designer, wrote a technical book (Sage Beginners Guide), and held leadership positions in volunteer organizations.

[1] http://www.ncep.noaa.gov/newsletter/october2012/printable.shtml

[1]http://www.noaanews.noaa.gov/stories2013/2013029_supercomputers.html

 

 

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

In just a few months time, Senegal will be operating the second largest HPC system in sub-Saharan Africa. The Minister of Higher Education, Research and Innovation Mary Teuw Niane made the announcement on Monday (Jan. 14 Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterized as transforming data into insights – which is exactly wh Read more…

By James Reinders

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPCwire Awards Highlight Supercomputing Achievements in the Sciences

January 3, 2019

In November at SC18 in Dallas, HPCwire Readers’ and Editors’ Choice awards program commemorated its 15th year of honoring achievement in HPC, with categories ranging from Best Use of AI to the Workforce Diversity Leadership Award and recipients across a wide variety of industrial and research sectors. Read more…

By the Editorial Team

White House Top Science Post Filled After Two-Year Vacancy

January 3, 2019

Half-way into Trump's term, the Senate has confirmed a director for the Office of Science and Technology Policy (OSTP), the agency that coordinates science poli Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This