Intel True Scale Fabric – Made for HPC

May 26, 2014

Unlike today’s solid but somewhat stodgy basic enterprise computing, HPC tends to engender an enthusiasm and a fascination with the underlying technology that is unique to its practitioners.

But there is a downside. An overemphasis on advanced feeds and speeds and the joys of parallelism can distract us from what is really key – what HPC can do for its users.

For example, take the development of InfiniBand and its direct descendant, Intel’s True Scale Fabric, an advanced interconnect based on the InfiniBand architecture.

The original InfiniBand design was created to speed up channel interconnects between processors and I/O devices for the data center marketplace. The design was to support very good I/O performance, especially in moving large blocks of data around the data center.

Fascinating technology. But when it came time to move InfiniBand into a new venue – the world of HPC – there were some problems with InfiniBand’s design due to its focus on the data center marketplace.

Joe Yaworski, Director of Marketing for Intel’s High performance Fabric Operations, points out that the InfiniBand architecture needed a big makeover to function in an HPC environment.

In particular, InfiniBand was poorly equipped to handle’s HPC’s primary protocol – the Message Passing Interface (MPI). MPI requires the movement of large numbers of very small messages to achieve its performance and scalability. Through a sequence of fortuitous acquisitions, including acquiring QLogic’s InfiniBand business several years ago, Intel was able to develop an optimized interface for MPI that supplanted InfiniBand’s Verbs and connection-based design and opened the door for an optimized high-speed interconnect solution for HPC.   Evidence of this success was recently shared in an audio podcast.

Enter True Scale Fabric

“True Scale Fabric was designed from the ground up for HPC,” comments Yaworski.

He says that the technology offers improved HPC performance at a competitive price point, especially for systems where outstanding performance across large node counts is a requirement.

True Scale Fabric includes a comprehensive line up of adapters for various server form factors, a full line of edge or top of rack fabric switches that start as little as 18 ports and go as high as 864 ports, and all the requisite management software.

The True Scale Fabric architecture provides:

  • Improved connectionless design – Designed around an implementation that minimizes state information on the adapter, this implementation provides low end-to-end latency, even at scale.
  • Increased MPI message rate support – Through an optimized interface library layer called PSM (Performance Scaled Messaging), which is designed to optimize the performance and scalability of MPI based applications.

How About the Users

That’s just a quick glimpse of some of the technology involved. But what about that all-important question – how does True Scale Fabric benefit Intel’s HPC customers?

Because the True Scale Fabric is a highly scalable interconnect design, it helps harness the power of every processor core to deliver high message rates for parallel workloads. An excellent example is the Department of Energy that has implemented the Intel fabric at its Tri-Labs – Los Alamos, Lawrence Livermore, and Sandia National Labs.

“By installing the True Scale Fabric, the three labs were able to scale their applications even more than they anticipated,” Yaworski reports. “These installations have been so successful that the labs have continued to order servers based on Intel processors and the True Scale Fabric.”

Other government agencies are taking full advantage of the technology to build the HPC infrastructure required to handle projects such as modeling nuclear weapons effects, designing advanced weapon’s systems, and simulating security threats.

In addition to government labs, a number of industry verticals are using the technology as well. In the energy field, many of the world’s largest oil exploration companies are using the Intel fabric to speed up their HPC infrastructure in order to improve their complex analyses of exploration and recovery.

In the world of academia, scientists and researchers are using the technology to solve complex problems that range from exploring the multi-physics associated with creating green products, to how climate change will impact coastal cities.

In the life sciences, the technology is being used to speed up the analysis of the massive big data involved in such fields as molecular modeling and genomics.

Manufacturing companies are increasingly relying on HPC-based modeling and simulation to design their products and improve their competiveness and profitability. True Scale Fabric helps the HPC clusters and supercomputers employed by automotive, aerospace, electronics and other manufacturing industry verticals achieve the performance necessary to create new products and bring them to market faster.

Yaworski was particularly taken with Saudi Aramco’s use of the True Scale Fabric technology. He reports that at the Intel booth at last year’s International Supercomputer Conference, Saudi Aramco demonstrated the power of high performance computing paired with advanced visualization. They deconstructed the detailed image of an Audi R-5 into its component parts and put it all back together again. “It was a terrific demonstration and really showcased what can be done with True Scale,” he says.

Moving Toward Exascale

Like the HPC industry in general and Intel’s product lines in particular, the True Scale Fabric technology is constantly evolving. In addition to meeting today’s HPC needs, out there on the horizon is exascale, the computational Holy Grail that Intel has pledged to support.

“Among the technologies needed to realize exascale class systems is CPU fabric integration,” Yaworksi states. “We need the power, performance, density, and reliability to support say, 150,000 to 200,000 servers with tens of millions of cores. Today’s HPC fabric technology is terrific, but we need to reexamine the requirements that will take us to exascale.

“Because interconnect is a key technology, we will continue to pioneer next generation fabrics,” he concludes. “And we’ll be supporting a new generation of users who will be accomplishing things with tomorrow’s HPC systems that we can’t even begin to imagine.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Nvidia P100 Shows 1.3-2.3x Speedup Over K80 GPU on Financial Apps

April 20, 2017

When it comes to the true performance of the latest silicon, every end user knows that the best processor is the one that works best for their application. Read more…

By Tiffany Trader

Quantum Adds Global Smarts to StorNext File System

April 20, 2017

Companies that use Quantum’s StorNext platform to store massive amounts of data this week got a glimpse of new storage capabilities that should make it easier to access their data horde from anywhere in the world. Read more…

By Alex Woodie

HPE Extreme Performance Solutions

HPC-Driven Weather Simulations Improving Forecasting Capabilities

In September of 1938, a massive hurricane traversed the Atlantic Ocean and made landfall in New England. Due to inadequate and incorrect forecasting, the storm struck farther north and with greater intensity than had been predicted, leaving residents and authorities with virtually no warning or time to properly prepare. Read more…

Scaling an HPC Career in Nepal Can Be a Steep Climb

April 20, 2017

Umesh Upadhyaya works as an IT Associate at the International Centre for Integrated Mountain Development (ICIMOD) in Nepal, which supports the country’s one and only HPC facility. He is directly involved in an initiative that focuses on climate change and atmosphere modeling Read more…

By Nages Sieslack

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Intel Open Sources All Lustre Work, Brent Gorda Exits

April 19, 2017

In a letter to the Lustre community posted on the Intel website, Vice President of Intel's Data Center Group Trish Damkroger writes that effective immediately the company will be contributing all Lustre development to the open source community. Damkroger also announced that Brent Gorda, General Manager, High Performance Data Division at Intel is leaving the company. Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Penguin Takes a Run at the Big Cloud Providers

April 12, 2017

HPC specialist Penguin Computing recently re-ran benchmarks from a study of its larger brethren and says the results show its ‘public cloud’ – Penguin on Demand (POD) – is among the leaders in cost and performance. Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC and the Colocation Datacenter – a Bridge Too Far?

April 7, 2017

A more standardised HPC platform approach is making the running of HPC projects within increasing financial reach. Read more…

By Clive Longbottom, Quocirca

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This