Intel True Scale Fabric – Made for HPC

May 26, 2014

Unlike today’s solid but somewhat stodgy basic enterprise computing, HPC tends to engender an enthusiasm and a fascination with the underlying technology that is unique to its practitioners.

But there is a downside. An overemphasis on advanced feeds and speeds and the joys of parallelism can distract us from what is really key – what HPC can do for its users.

For example, take the development of InfiniBand and its direct descendant, Intel’s True Scale Fabric, an advanced interconnect based on the InfiniBand architecture.

The original InfiniBand design was created to speed up channel interconnects between processors and I/O devices for the data center marketplace. The design was to support very good I/O performance, especially in moving large blocks of data around the data center.

Fascinating technology. But when it came time to move InfiniBand into a new venue – the world of HPC – there were some problems with InfiniBand’s design due to its focus on the data center marketplace.

Joe Yaworski, Director of Marketing for Intel’s High performance Fabric Operations, points out that the InfiniBand architecture needed a big makeover to function in an HPC environment.

In particular, InfiniBand was poorly equipped to handle’s HPC’s primary protocol – the Message Passing Interface (MPI). MPI requires the movement of large numbers of very small messages to achieve its performance and scalability. Through a sequence of fortuitous acquisitions, including acquiring QLogic’s InfiniBand business several years ago, Intel was able to develop an optimized interface for MPI that supplanted InfiniBand’s Verbs and connection-based design and opened the door for an optimized high-speed interconnect solution for HPC.   Evidence of this success was recently shared in an audio podcast.

Enter True Scale Fabric

“True Scale Fabric was designed from the ground up for HPC,” comments Yaworski.

He says that the technology offers improved HPC performance at a competitive price point, especially for systems where outstanding performance across large node counts is a requirement.

True Scale Fabric includes a comprehensive line up of adapters for various server form factors, a full line of edge or top of rack fabric switches that start as little as 18 ports and go as high as 864 ports, and all the requisite management software.

The True Scale Fabric architecture provides:

  • Improved connectionless design – Designed around an implementation that minimizes state information on the adapter, this implementation provides low end-to-end latency, even at scale.
  • Increased MPI message rate support – Through an optimized interface library layer called PSM (Performance Scaled Messaging), which is designed to optimize the performance and scalability of MPI based applications.

How About the Users

That’s just a quick glimpse of some of the technology involved. But what about that all-important question – how does True Scale Fabric benefit Intel’s HPC customers?

Because the True Scale Fabric is a highly scalable interconnect design, it helps harness the power of every processor core to deliver high message rates for parallel workloads. An excellent example is the Department of Energy that has implemented the Intel fabric at its Tri-Labs – Los Alamos, Lawrence Livermore, and Sandia National Labs.

“By installing the True Scale Fabric, the three labs were able to scale their applications even more than they anticipated,” Yaworski reports. “These installations have been so successful that the labs have continued to order servers based on Intel processors and the True Scale Fabric.”

Other government agencies are taking full advantage of the technology to build the HPC infrastructure required to handle projects such as modeling nuclear weapons effects, designing advanced weapon’s systems, and simulating security threats.

In addition to government labs, a number of industry verticals are using the technology as well. In the energy field, many of the world’s largest oil exploration companies are using the Intel fabric to speed up their HPC infrastructure in order to improve their complex analyses of exploration and recovery.

In the world of academia, scientists and researchers are using the technology to solve complex problems that range from exploring the multi-physics associated with creating green products, to how climate change will impact coastal cities.

In the life sciences, the technology is being used to speed up the analysis of the massive big data involved in such fields as molecular modeling and genomics.

Manufacturing companies are increasingly relying on HPC-based modeling and simulation to design their products and improve their competiveness and profitability. True Scale Fabric helps the HPC clusters and supercomputers employed by automotive, aerospace, electronics and other manufacturing industry verticals achieve the performance necessary to create new products and bring them to market faster.

Yaworski was particularly taken with Saudi Aramco’s use of the True Scale Fabric technology. He reports that at the Intel booth at last year’s International Supercomputer Conference, Saudi Aramco demonstrated the power of high performance computing paired with advanced visualization. They deconstructed the detailed image of an Audi R-5 into its component parts and put it all back together again. “It was a terrific demonstration and really showcased what can be done with True Scale,” he says.

Moving Toward Exascale

Like the HPC industry in general and Intel’s product lines in particular, the True Scale Fabric technology is constantly evolving. In addition to meeting today’s HPC needs, out there on the horizon is exascale, the computational Holy Grail that Intel has pledged to support.

“Among the technologies needed to realize exascale class systems is CPU fabric integration,” Yaworksi states. “We need the power, performance, density, and reliability to support say, 150,000 to 200,000 servers with tens of millions of cores. Today’s HPC fabric technology is terrific, but we need to reexamine the requirements that will take us to exascale.

“Because interconnect is a key technology, we will continue to pioneer next generation fabrics,” he concludes. “And we’ll be supporting a new generation of users who will be accomplishing things with tomorrow’s HPC systems that we can’t even begin to imagine.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This