Intel Gives Code Modernization Fresh Push

By Nicole Hemsoth

May 28, 2014

In the conversations leading up to exascale, one of the most frequently cited pain points is the need for massive software optimization and code modernization. But this isn’t just a relevant topic for the largest system operators at the supercomputing pinnacle.

According to Intel’s General Manager of the Technical Computing Group, Charlie Wuischpard, there are many centers, both academic and commercial, that are leaving incredible performance gains on the table because of a lack of appropriate investment in their codes, many of which aren’t taking advantage of the number of cores, vectorization, and other capabilities that sit idle in modern manycore and multicore architectures.

While the need for disruptive measures to wake application owners up to the possibilities of exploiting these capabilities isn’t news to most, there are a couple of barriers that chipmaker hopes to break with an expansion of their Intel Parallel Computing Center program, which launched in October of last year and due to demand, has been expanded with a new call for proposals. While the support and guidance, financial and otherwise, these centers receive from the company are not modest, the real problem is higher level than simply digging into aging code. As with so many other challenges in commercial and research HPC, it’s a matter of funding.

According to Bob Burroughs, Director of Intel’s Technical Computing Ecosystem Enablement, the standard for institutions and companies they work with is to show performance and ROI gains based on hardware-driven generation jumps, which by default offer greater performance. But as many are quickly becoming aware, that mode of boosting systems hits a brick wall when the compute far outpaces the code. In other words, the historical vision Intel and others have pitched has spoken directly to the hardware and infrastructure decision makers. But without direct investment in the software and application side of the house as a priority, adding more, faster cores will fall continuously flat. So the issue becomes an institutional one—both in research and commercial HPC. It’s a new flow of investment driven to internal groups that generally don’t touch much of the hardware investment decision-making.

Wuischpard and Burroughs said they were bowled over by the interest in their Parallel Computing Center Program—not simply because it showed there is definite interest from a wide community, but more important, because it shows just how little external investment there seems to be in this most critical area. The hardware ROI discussions are so often center stage at institutions with too little recognition of how the real return on any such investment is hinged directly to software refinement and modernization.

The same is true at national labs and government agencies, says Burroughs. It’s far easier for centers to push through big funding for projects that pitch the system-level value, but too often, the software optimization and modernization piece, which incidentally is the most critical component going forward, is not given the funding and effort required to fully maximize the hardware investments. What’s needed, says Burroughs, is a steady, sustained emphasis on modernizing codes to take advantage of the architectures of the future, but this isn’t something that his company alone can spearhead.

“We can’t fund it all,” he says, pointing to his hope that their centers can show real-world gains as a result of these optimizations, thus validating the case for future investments.

Wuishpard reminds that this need for optimization and modernization isn’t just an issue for the large labs and academic centers to consider in a future roadmap sense. There are 10x-100x performance gains left on the table for a large swath of users who simply hopped from generation to generation with a single-core mindset and no real incentive to make the difficult software investments required. He points to a few innovative places where current and future work is being meshed to extract performance gains now through code modernization with an eye on how the systems of the future will further maximize these investments.

One example he pointed to was the NERSC-8 system, which requires that their application developers start digging into the code to exploit the cores, threads and other capabilities of the selected Knights Landing architecture before the system is ever delivered. He referred also to other representative examples that highlight the current progress of code optimization for coming architectures via the GROMACS work at the University of Tennessee—a project that effectively rendered one of the most widely-used molecular dynamics codes across life sciences future-ready.

Burroughs and Wuishpard shared that Intel plans on highlighting specific examples on real-world codes over the course of the next year to drive home the value of their investment in software optimization. However, with a future defined by manycore and multicore architectures, even without Intel’s investment this should be a priority item for funding agencies, infrastructure decision makers and most important—the code folks themselves. Without their direct involvement, the hardware gains are minimal. We’ll share these stories over the coming about how this critical software work translates into direct gain.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This