Sandia Launches Post-Silicon Development Effort

By Tiffany Trader

May 28, 2014

As microprocessors push up against the limits of miniaturization, many are reflecting on what the post-silicon era has in store. Recently Sandia National Laboratories published an article describing the steps it is taking to extend the pace of computational progress over the coming decades. Some of the forward-leaning technologies include self-learning supercomputers and systems that greatly outperform today’s best crop while using less energy.

As history tells us, many of today’s established technologies would have seemed impossible at one time. Think about explaining Internet-connected smart phones to a pre-mobile, pre-Web generation – and that wasn’t that long ago.

“We think that by combining capabilities in microelectronics and computer architecture, Sandia can help initiate the jump to the next technology curve sooner and with less risk,” said Rob Leland, head of Sandia’s Computing Research Center.

Leland is leading a new initiative focused on next-generation computing called Beyond Moore Computing that encompasses Sandia’s efforts to advance computing technology beyond the exponential trend that was observed by Gordon Moore in 1965.

Moore’s law can be extended for a few more process shrinks but the cost is no longer feasible from an energy perspective. The industry needs technology that uses less energy at the transistor device-level, expressed Leland.

Scientists at Sandia anticipate that multiple computing device-level technologies will evolve to fill this gap, as opposed to one dominant architecture. So far, there exist about a dozen candidates, including tunnel FETs (field effect transistors), carbon nanotubes, superconductors, and paradigm-changing approaches like quantum computing and brain-inspired computing.

Leland makes the case that Sandia Labs, a multi-program laboratory operated by Sandia Corporation, a subsidiary of Lockheed Martin Corp., is well positioned to shape future computing technology.

The lab has decades of supercomputing experience, both on the hardware and software side, extending to capability computing and capacity computing. Leland references two key facilities in particular that will contribute to next-gen computing: the Microsystems and Engineering Sciences Applications (MESA) complex, which carries out chip-level R&D; and the Center for Integrated Nanotechnology (CINT), a Department of Energy Office of Science national user facility operated by Sandia and Los Alamos national laboratories.

This is really an inflection point, where it is difficult to predict what tomorrow’s computers will look like. “We have some ideas, of course, and we have different camps of opinion about what it might look like, but we’re really right in the midst of figuring that out,” Leland said.

One way that computing’s progress has been limited is the mandate for backwards software compatibility. Many computers are running code that was optimized to run on a different architecture.

“To break out of that, we have to find different architectures that are more energy efficient at running old code and are more easily programmed for new code, or architectures that can learn some behaviors that once required programming,” notes Erik DeBenedictis of Sandia’s Advanced Device Technologies department. He expects that computers are about a decade away from being able to manage both old and new code in an efficient manner.

DeBenedictis is pushing for breakthroughs beyond the transistor level. He cites cognitive computers and technologies that move data more efficiently as being crucial for the kinds of big data problems that are becoming so prominent.

This new generation of cognitive computers would be self-learning and able to share some of the programming burden. DeBenedictis makes the point that “while computers have gotten millions of times faster, programmers and analysts are pretty much as efficient as they’ve always been.” Smarter computers have the promise of ameliorating this bottleneck.

As for a timeline, Advanced Device Technologies department manager John Aidun says that post-silicon technology is coming sooner than one might think. Looking through the lens of national security, Sandia thinks this new tech will be needed sooner than industry would develop it on its own. Hence, the concerted efforts in this direction. Aidun estimates Sandia could have a prototype within a decade.

The lab is working to accelerate the process by identifying computer designs that leverage new device technologies and demonstrate fabrication steps that would lower the risk for industry. Mobile computing is an area that’s getting a lot of attention. Mobile meets a lot of the requirements of UAVs and satellites. On-board processing for satellites and other sensors would mean less need for data transfer.

Again, with history as a guide, the next big thing in computing may be an extention of a current technology, a mix of technologies (as in heterogeneous computing) or it might be something entirely different and new.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Challenges Face Astroinformatics as It Sorts Through the Stars

June 15, 2018

You might have seen one of those YouTube videos: they begin on Earth, slowly zooming out to the Moon, the Solar System, the Milky Way, beyond – and suddenly, you’re looking at trillions of stars. It’s a lot to take Read more…

By Oliver Peckham

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

SDSC Researchers Use Machine Learning to More Accurately Model Water

June 13, 2018

Water – H2O – is a simple but fascinating (and useful) compound. San Diego Supercomputing Center researchers used machine learning techniques to develop models for simulations of water with “unprecedented accuracy. Read more…

By Staff

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Banks Boost Infrastructure to Tackle GDPR

As banks become more digital and data-driven, their IT managers are challenged with fast growing data volumes and lines-of-businesses’ (LoBs’) seemingly limitless appetite for analytics. Read more…

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Exascale USA – Continuing to Move Forward

June 6, 2018

The end of May 2018, saw several important events that continue to advance the Department of Energy’s (DOE) Exascale Computing Initiative (ECI) for the United Read more…

By Alex R. Larzelere

Exascale for the Rest of Us: Exaflops Systems Capable for Industry

June 6, 2018

Enterprise advanced scale computing – or HPC in the enterprise – is an entity unto itself, situated between (and with characteristics of) conventional enter Read more…

By Doug Black

Fracas in Frankfurt: ISC18 Cluster Competition Teams Unveiled

June 6, 2018

The Student Cluster Competition season heats up with the seventh edition of the ISC Student Cluster Competition, slated to begin on June 25th in Frankfurt, Germ Read more…

By Dan Olds

Japan Starts Up 3-Petaflops ‘ATERUI II’ Cray Supercomputer

June 5, 2018

The world's most powerful supercomputer for astrophysical calculations has begun operations in Japan. The announcement comes from the National Astronomical Obse Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This