HPC Storage Enters a New Era

June 2, 2014

Until relatively recently, HPC storage systems have been almost an afterthought, a grab bag mix of components jury rigged together to support the star of the show – a supercomputer or a large compute cluster.

A typical legacy HPC storage solution was made up of commercially available RAID arrays, network filers, or direct attached disks. The problem is that these were simply cobbled together to cover a point design in the past. However, these configurations are not able to efficiently deliver parallel I/O to thousands of compute nodes that we now commonly see in mid to large HPC system installations. The “I/O bottleneck” – the difficulty of moving reads and writes past the storage I/O interface controller – became a major sticking point. By themselves, these ad hoc separate storage piece-parts did not inherently scale to achieve desired characteristics such as massive linear performance scale from terabytes to petabytes storage capacity, along with a single globally coherent name space.

Not Quite There Yet

The development of Lustre® established the means to solve these problems – the Lustre file system has the right architecture to deliver the requisite massive performance and capacity needed, as well as the ability to present a single, globally coherent name space. Where things go wrong is in the implementation – continued use of the ad hoc approach described above is the culprit.

Unfortunately, implementing the Lustre file system using a mix of separate components from different vendors takes its toll on HPC projects in the form of wasted time, inefficiency, excessive expense, and loss of productivity. Compounding problems caused by lack of interoperability and compatibility between separate components, without end-to-end management tools and support, system administrators are on their own to troubleshoot errors. Further, system administrators constantly face tuning issues and intermittent race-conditions arising from the interaction of non-integrated servers, storage and software. This represents unacceptable and yet entirely avoidable problems that directly impact an organization’s bottom line.

Today there is an extraordinary explosion of commercial Big Data being generated by industries such as the life sciences, oil and gas, manufacturing, defense, and technical computing in general. This is driving the demand for comprehensive solution assurance, measured in industrial grade efficient, reliable, cost effective HPC storage that can handle massive amounts of sustained workload consisting of both structured and unstructured data.

Next Generation Storage

Fortunately HPC storage is evolving to meet these challenges. The industry is developing next generation scale-out storage systems that are pre-integrated, pre-tested, and designed for cost effective high productivity and reliability.

These systems are characterized by:

  • Cost-effective, efficient scalability using modular storage building blocks, including all hardware, software, networking, and the parallel file system
  • Fast concurrent data access for large numbers of users working collaboratively
  • High system robustness and resiliency to ensure high availability
  • Faster, easier system implementation made possible by factory-installed and tested rack solutions, featuring vastly reduced cable complexity – solutions are deployed in hours, not days or weeks.
  • Streamlined system expansion with the addition of turnkey embedded storage and processing nodes
  • Smaller footprint, high density configuration to reduce floor space, rack space envelopes, and power and cooling requirements
  • Efficient integrated end-to-end management through a single user interface along with integrated end-to-end support

An Innovative and Efficient Solution

The ClusterStor™ family of HPC scale-out storage solutions, introduced in 2011, provides these capabilities. ClusterStor is optimized from the disk to the file system creating the only truly engineered HPC storage solution from a single vendor.   Systems range from the ClusterStor 1500 for use by departmental level clusters to the ClusterStor 9000, specifically engineered for the largest and fastest HPC and Big Data installations on the planet.

No other HPC storage system matches ClusterStor’s proven cost effective capability to reliably sustain the fastest currently available Lustre file system I/O throughput with the least amount of hardware, while supporting installations from tens of terabytes up to tens of petabytes of data.

The key to ClusterStor capabilities is the solution’s integrated scale-out storage hardware and software architecture. The ClusterStor engineered solution packages high performance, distributed computing storage elements that encompass everything needed – from the disk enclosure and storage processing platform to the embedded operating system, file system, data protection layer, networking and advanced user interface.

At the heart of the ClusterStor scale-out storage architecture is the Scalable Storage Unit (SSU). The SSU comprehensively integrates what used to be entirely separate storage, network, and file system components into a single easy to use, rack mountable, modular building block. The SSU functions as a linear scaling unit that delivers a predictable level of performance and data storage capacity without any of the waste, expense and delay associated with legacy methods.

Overall, the resilient and consolidated ClusterStor operating environment from a single solution provider takes full advantage of the performance and scaling capabilities of the Lustre file system while eliminating problems associated with deploying separate components from different vendors. The ClusterStor approach to HPC storage boosts productivity while lowering TCO. Operational up-time and application availability are maximized through ClusterStor’s built-in high availability design and comprehensive set of distributed management services.

Pre-integrated, pre-tested, and designed for cost effective high productivity and reliability, the ClusterStor family provides resiliency engineered enterprise class storage solutions, for industrial grade HPC and Big Data applications.

Meeting the Challenge

The ascendancy of big data has catapulted HPC storage into the limelight. Xyratex a Seagate company, with its ClusterStor offerings, has risen to the challenge by creating an innovative family of storage appliances designed specifically for today’s compute-intensive operating environment that are easy to use, easy to manage and deliver the fastest results at any scale.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This