Benchmarking HPC in the Cloud

By Tiffany Trader

June 10, 2014

All clouds are not the same. It’s an adage that rings especially true when it comes to running high-performance computing (HPC) workloads. HPC middleware solutions vendor Techila Technologies recently took the time to benchmark and analyze three of the top cloud platforms – Amazon Web Services, Google Compute Engine, and Microsoft Azure – in the context of several real-world high-performance computing scenarios. The results are detailed in a subsequent report, titled simply “Cloud Benchmark – Round 1.”

“If the technical features of a cloud do not align with the needs of business, a solution which looks cost efficient can have a high cost of ownership.” This observation by Techila speaks to why the benchmarking was carried out, to explore which cloud offerings and instance types work best for a given application.

Techila HPC cloud benchmark Table1

Techila explains that the benchmark experiment was intended to provide HPC customers with an easy-to-understand analysis. Potential cloud adopters have told the company that FLOPS-per-dollar and Gbps-per-dollar are interesting but do not adequately answer their questions or address their concerns.

“Raw processor power, available memory, or theoretical maximum data transfer rate do not always translate directly to application performance,” writes Techila. “Because of this, the focus of [the] benchmark experiment is on testing the performance of AWS, Google Compute Engine GCE, and Azure in real-world HPC use-cases, and on studying how the leading clouds can respond to requirements arising from HPC scenarios.”

The test suite that Techila used was developed with the participation of cloud providers and users of MATLAB, R programming language, and simulation-backed engineering tools. After the first round of testing, the primary conclusion was that not all platforms demonstrate the same level of elasticity.

Tests fell into two categories: deployment and application performance. The first test zeroed in on a cloud’s ability to respond to computing needs. The focus was directed to embarrassingly parallel problems, which can scale to best use a large number of cores. (Techila says it is planning MPI-like tests in the future.)

The experiment set out to answer several questions, such as:

What instance types provide the best performance? Should I use the most expensive instance types?
Does the operating system of the cloud have effect on the throughput of the system?
Should I worry about the internal infrastructure of the cloud?

For convenience, Techila provides a chart of each cloud’s technical specifications (see above). With regard to instance types, for Azure, the report looked at A8 (with Windows) and the Extra Large (A4) (also with Windows). For AWS, two implementations of c3.8xlarge were examined, one with Windows and one with Linux. And for Google Compute Engine (GCE), they used n1-standard-8 (with Debian 7).

While cloud pricing has gone through many revisions, the prices at the time of the experiment are also listed. The price per CPU core/hour in US dollars ranges from .060 (for AWS with Linux) to .306 for Azure A8.

The deployment tests analyzed the deployment of a 256 CPU core virtual HPC environment in a cloud. Among the interesting findings, Techila observed that deployments with Microsoft Windows operating system take longer than instance types with a Linux operating system. The authors suggest this is likely related to System Preparation (Sysprep) phase, which occurs during the installation of Microsoft Windows.

Techila HPC cloud benchmark Fig1

Another finding relates to the shape of the AWS c3.8xlarge and Azure A8 Windows instances. The deployment is not linear. The report’s authors suggest that “a possible reason for this is that the availability of these instance types is still quite limited and datacenters have challenges in responding to a request for a large number of these instance types.”

Testing deployment on Azure was not possible in this experiment because Azure is designed as a Platform-as-a-Service (PaaS) and does not provide the needed Java management interfaces for the current version of the Techila Deployment Tool.

The configuration tests examined how MATLAB-based applications fare in a 256 CPU core virtual HPC environment. The findings show that configuration of an instance was slower in Azure than the other cloud offerings. They reason that this could be do to Azure’s PaaS-based design. AWS and GCW, however provide direct access to the infrastructure. “Because of the limitations of Azure’s PaaS design Techila middleware can not support Peer-to-Peer (P2P) transfer technology inside the HPC environment in Azure,” note the report’s authors.

Another key observation was that configuring the AWS instance was quicker with Linux than Windows. While the experimenters can’t confirm the basis for this, they think it might be explained by file system capabilities. The data transferred was said to contain approximately 33,000 files, and it’s been suggested that the file system on Windows performs slower when handling a large number of rather small files.

The HPC application tests looked at three common application scenarios:

  • model calibration (using MATLAB code)
  • portfolio simulation (implemented in R)
  • machine learning (implemented in C++)

Techila provides detailed assessments of each application case, with charts that include Wall-clock time, price per CPU core and cost of cloud computing.

Here are several of the interesting observations made by the experimenters:

For MATLAB code:

“The findings show that in this particular scenario MATLAB seems to perform better in Windows environment than on Linux environments.”

For R users:

“An interesting observation is related to the performance of AWS c3.8xlarge performance. When compared to Azure A8 and Azure Extra Large, we can see that in this case, the Azure Extra Large provides a very similar performance as AWS c3.8xlarge, and Azure A8 provides double performance compared to AWS c3.8xlarge and Azure Extra Large. Because the cost of Azure Extra Large is affordable and Azure supports a fine granularity billing, this can make Azure Extra Large a great value option for users of R programming language.”

“Another interesting observation is that in this case AWS c3.xlarge with Linux provides clearly better performance than AWS c3.8xlarge running Windows operating system.”

For machine learning:

“Another interesting observation is that in this specific case Azure A8 and AWS c3.8xlarge with Windows operating system provided very similar performance, despite of differences observed in other test cases. It was suggested that this could be related to the fact that some scenarios are well suited for hyper threading and can benefit of it. Because of this, if the goal is to get the most out of a hyper threading platform, it is important to understand the suitability of the applications for the platform.”

Based on the results of Techila’s first cloud benchmarking round, the company is confident that cloud computing will have a role to play in HPC. The experimenters also believe that cloud will have a profound democratizing effect on HPC, writing:

“HPC will no longer be science, which would require special training and expensive upfront investments. Cloud will bring HPC to new desks and simplified user experience will empower new users to benefit of it.”

The testing process also served as a reminder that commercial cloud platforms follow more of a hardware path in that they don’t use version numbering. Vendors are constantly pushing out new instance types and features, and prices too are under constant revision. Because of this, any benchmarking must be regarded as work in progress. To stay relevant with these changes, Techila is planning to keep its report up to date by repeating tests periodically.

Techila also raises the point that elasticity is not truly unlimited. Resource provisioning, even at the scale of Amazon, etc., is still limited by physical boundaries. Aside from impacting the planning stage, Techila maintains that the physical architecture is the reason why HPC in the cloud needs middleware.

“Performing such experiments in a loosely coupled infrastructure, such as the cloud, requires a middleware, which enables horizontal scaling and can hide the possible nonlinearities of the physical infrastructure,” the report states. “After all, cloud is built of very similar units what we see in our offices. When we come to the limits to the physical unit’s scalability, we need a solution, which enables scaling over the limit, which in this experiment was the Techila HPC middleware.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

HPE Extreme Performance Solutions

Leveraging the Power of Big Data to Improve Customer Satisfaction & Brand Loyalty

In the dynamic world of retail, retailers must find ways to recognize and effectively respond to shopping behaviors, patterns, and trends in order to succeed. Read more…

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This