Benchmarking HPC in the Cloud

By Tiffany Trader

June 10, 2014

All clouds are not the same. It’s an adage that rings especially true when it comes to running high-performance computing (HPC) workloads. HPC middleware solutions vendor Techila Technologies recently took the time to benchmark and analyze three of the top cloud platforms – Amazon Web Services, Google Compute Engine, and Microsoft Azure – in the context of several real-world high-performance computing scenarios. The results are detailed in a subsequent report, titled simply “Cloud Benchmark – Round 1.”

“If the technical features of a cloud do not align with the needs of business, a solution which looks cost efficient can have a high cost of ownership.” This observation by Techila speaks to why the benchmarking was carried out, to explore which cloud offerings and instance types work best for a given application.

Techila HPC cloud benchmark Table1

Techila explains that the benchmark experiment was intended to provide HPC customers with an easy-to-understand analysis. Potential cloud adopters have told the company that FLOPS-per-dollar and Gbps-per-dollar are interesting but do not adequately answer their questions or address their concerns.

“Raw processor power, available memory, or theoretical maximum data transfer rate do not always translate directly to application performance,” writes Techila. “Because of this, the focus of [the] benchmark experiment is on testing the performance of AWS, Google Compute Engine GCE, and Azure in real-world HPC use-cases, and on studying how the leading clouds can respond to requirements arising from HPC scenarios.”

The test suite that Techila used was developed with the participation of cloud providers and users of MATLAB, R programming language, and simulation-backed engineering tools. After the first round of testing, the primary conclusion was that not all platforms demonstrate the same level of elasticity.

Tests fell into two categories: deployment and application performance. The first test zeroed in on a cloud’s ability to respond to computing needs. The focus was directed to embarrassingly parallel problems, which can scale to best use a large number of cores. (Techila says it is planning MPI-like tests in the future.)

The experiment set out to answer several questions, such as:

What instance types provide the best performance? Should I use the most expensive instance types?
Does the operating system of the cloud have effect on the throughput of the system?
Should I worry about the internal infrastructure of the cloud?

For convenience, Techila provides a chart of each cloud’s technical specifications (see above). With regard to instance types, for Azure, the report looked at A8 (with Windows) and the Extra Large (A4) (also with Windows). For AWS, two implementations of c3.8xlarge were examined, one with Windows and one with Linux. And for Google Compute Engine (GCE), they used n1-standard-8 (with Debian 7).

While cloud pricing has gone through many revisions, the prices at the time of the experiment are also listed. The price per CPU core/hour in US dollars ranges from .060 (for AWS with Linux) to .306 for Azure A8.

The deployment tests analyzed the deployment of a 256 CPU core virtual HPC environment in a cloud. Among the interesting findings, Techila observed that deployments with Microsoft Windows operating system take longer than instance types with a Linux operating system. The authors suggest this is likely related to System Preparation (Sysprep) phase, which occurs during the installation of Microsoft Windows.

Techila HPC cloud benchmark Fig1

Another finding relates to the shape of the AWS c3.8xlarge and Azure A8 Windows instances. The deployment is not linear. The report’s authors suggest that “a possible reason for this is that the availability of these instance types is still quite limited and datacenters have challenges in responding to a request for a large number of these instance types.”

Testing deployment on Azure was not possible in this experiment because Azure is designed as a Platform-as-a-Service (PaaS) and does not provide the needed Java management interfaces for the current version of the Techila Deployment Tool.

The configuration tests examined how MATLAB-based applications fare in a 256 CPU core virtual HPC environment. The findings show that configuration of an instance was slower in Azure than the other cloud offerings. They reason that this could be do to Azure’s PaaS-based design. AWS and GCW, however provide direct access to the infrastructure. “Because of the limitations of Azure’s PaaS design Techila middleware can not support Peer-to-Peer (P2P) transfer technology inside the HPC environment in Azure,” note the report’s authors.

Another key observation was that configuring the AWS instance was quicker with Linux than Windows. While the experimenters can’t confirm the basis for this, they think it might be explained by file system capabilities. The data transferred was said to contain approximately 33,000 files, and it’s been suggested that the file system on Windows performs slower when handling a large number of rather small files.

The HPC application tests looked at three common application scenarios:

  • model calibration (using MATLAB code)
  • portfolio simulation (implemented in R)
  • machine learning (implemented in C++)

Techila provides detailed assessments of each application case, with charts that include Wall-clock time, price per CPU core and cost of cloud computing.

Here are several of the interesting observations made by the experimenters:

For MATLAB code:

“The findings show that in this particular scenario MATLAB seems to perform better in Windows environment than on Linux environments.”

For R users:

“An interesting observation is related to the performance of AWS c3.8xlarge performance. When compared to Azure A8 and Azure Extra Large, we can see that in this case, the Azure Extra Large provides a very similar performance as AWS c3.8xlarge, and Azure A8 provides double performance compared to AWS c3.8xlarge and Azure Extra Large. Because the cost of Azure Extra Large is affordable and Azure supports a fine granularity billing, this can make Azure Extra Large a great value option for users of R programming language.”

“Another interesting observation is that in this case AWS c3.xlarge with Linux provides clearly better performance than AWS c3.8xlarge running Windows operating system.”

For machine learning:

“Another interesting observation is that in this specific case Azure A8 and AWS c3.8xlarge with Windows operating system provided very similar performance, despite of differences observed in other test cases. It was suggested that this could be related to the fact that some scenarios are well suited for hyper threading and can benefit of it. Because of this, if the goal is to get the most out of a hyper threading platform, it is important to understand the suitability of the applications for the platform.”

Based on the results of Techila’s first cloud benchmarking round, the company is confident that cloud computing will have a role to play in HPC. The experimenters also believe that cloud will have a profound democratizing effect on HPC, writing:

“HPC will no longer be science, which would require special training and expensive upfront investments. Cloud will bring HPC to new desks and simplified user experience will empower new users to benefit of it.”

The testing process also served as a reminder that commercial cloud platforms follow more of a hardware path in that they don’t use version numbering. Vendors are constantly pushing out new instance types and features, and prices too are under constant revision. Because of this, any benchmarking must be regarded as work in progress. To stay relevant with these changes, Techila is planning to keep its report up to date by repeating tests periodically.

Techila also raises the point that elasticity is not truly unlimited. Resource provisioning, even at the scale of Amazon, etc., is still limited by physical boundaries. Aside from impacting the planning stage, Techila maintains that the physical architecture is the reason why HPC in the cloud needs middleware.

“Performing such experiments in a loosely coupled infrastructure, such as the cloud, requires a middleware, which enables horizontal scaling and can hide the possible nonlinearities of the physical infrastructure,” the report states. “After all, cloud is built of very similar units what we see in our offices. When we come to the limits to the physical unit’s scalability, we need a solution, which enables scaling over the limit, which in this experiment was the Techila HPC middleware.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Cray Introduces All Flash Lustre Storage Solution Targeting HPC

June 19, 2018

Citing the rise of IOPS-intensive workflows and more affordable flash technology, Cray today introduced the L300F, a scalable all-flash storage solution whose primary use case is to support high IOPS rates to/from a scra Read more…

By John Russell

Lenovo to Debut ‘Neptune’ Cooling Technologies at ISC ‘18

June 19, 2018

Lenovo today announced a set of cooling technologies, dubbed Neptune, that include direct to node (DTN) warm water cooling, rear door heat exchanger (RDHX), and hybrid solutions that combine air and liquid cooling. Lenov Read more…

By John Russell

World Cup is Lame Compared to This Competition

June 18, 2018

So you think World Cup soccer is a big deal? While I’m sure it’s very compelling to watch a bunch of athletes kick a ball around, World Cup misses the boat because it doesn’t include teams putting together their ow Read more…

By Dan Olds

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Banks Boost Infrastructure to Tackle GDPR

As banks become more digital and data-driven, their IT managers are challenged with fast growing data volumes and lines-of-businesses’ (LoBs’) seemingly limitless appetite for analytics. Read more…

IBM Demonstrates Deep Neural Network Training with Analog Memory Devices

June 18, 2018

From smarter, more personalized apps to seemingly-ubiquitous Google Assistant and Alexa devices, AI adoption is showing no signs of slowing down – and yet, the hardware used for AI is far from perfect. Currently, GPUs Read more…

By Oliver Peckham

Cray Introduces All Flash Lustre Storage Solution Targeting HPC

June 19, 2018

Citing the rise of IOPS-intensive workflows and more affordable flash technology, Cray today introduced the L300F, a scalable all-flash storage solution whose p Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Exascale USA – Continuing to Move Forward

June 6, 2018

The end of May 2018, saw several important events that continue to advance the Department of Energy’s (DOE) Exascale Computing Initiative (ECI) for the United Read more…

By Alex R. Larzelere

Exascale for the Rest of Us: Exaflops Systems Capable for Industry

June 6, 2018

Enterprise advanced scale computing – or HPC in the enterprise – is an entity unto itself, situated between (and with characteristics of) conventional enter Read more…

By Doug Black

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This