Benchmarking HPC in the Cloud

By Tiffany Trader

June 10, 2014

All clouds are not the same. It’s an adage that rings especially true when it comes to running high-performance computing (HPC) workloads. HPC middleware solutions vendor Techila Technologies recently took the time to benchmark and analyze three of the top cloud platforms – Amazon Web Services, Google Compute Engine, and Microsoft Azure – in the context of several real-world high-performance computing scenarios. The results are detailed in a subsequent report, titled simply “Cloud Benchmark – Round 1.”

“If the technical features of a cloud do not align with the needs of business, a solution which looks cost efficient can have a high cost of ownership.” This observation by Techila speaks to why the benchmarking was carried out, to explore which cloud offerings and instance types work best for a given application.

Techila HPC cloud benchmark Table1

Techila explains that the benchmark experiment was intended to provide HPC customers with an easy-to-understand analysis. Potential cloud adopters have told the company that FLOPS-per-dollar and Gbps-per-dollar are interesting but do not adequately answer their questions or address their concerns.

“Raw processor power, available memory, or theoretical maximum data transfer rate do not always translate directly to application performance,” writes Techila. “Because of this, the focus of [the] benchmark experiment is on testing the performance of AWS, Google Compute Engine GCE, and Azure in real-world HPC use-cases, and on studying how the leading clouds can respond to requirements arising from HPC scenarios.”

The test suite that Techila used was developed with the participation of cloud providers and users of MATLAB, R programming language, and simulation-backed engineering tools. After the first round of testing, the primary conclusion was that not all platforms demonstrate the same level of elasticity.

Tests fell into two categories: deployment and application performance. The first test zeroed in on a cloud’s ability to respond to computing needs. The focus was directed to embarrassingly parallel problems, which can scale to best use a large number of cores. (Techila says it is planning MPI-like tests in the future.)

The experiment set out to answer several questions, such as:

What instance types provide the best performance? Should I use the most expensive instance types?
Does the operating system of the cloud have effect on the throughput of the system?
Should I worry about the internal infrastructure of the cloud?

For convenience, Techila provides a chart of each cloud’s technical specifications (see above). With regard to instance types, for Azure, the report looked at A8 (with Windows) and the Extra Large (A4) (also with Windows). For AWS, two implementations of c3.8xlarge were examined, one with Windows and one with Linux. And for Google Compute Engine (GCE), they used n1-standard-8 (with Debian 7).

While cloud pricing has gone through many revisions, the prices at the time of the experiment are also listed. The price per CPU core/hour in US dollars ranges from .060 (for AWS with Linux) to .306 for Azure A8.

The deployment tests analyzed the deployment of a 256 CPU core virtual HPC environment in a cloud. Among the interesting findings, Techila observed that deployments with Microsoft Windows operating system take longer than instance types with a Linux operating system. The authors suggest this is likely related to System Preparation (Sysprep) phase, which occurs during the installation of Microsoft Windows.

Techila HPC cloud benchmark Fig1

Another finding relates to the shape of the AWS c3.8xlarge and Azure A8 Windows instances. The deployment is not linear. The report’s authors suggest that “a possible reason for this is that the availability of these instance types is still quite limited and datacenters have challenges in responding to a request for a large number of these instance types.”

Testing deployment on Azure was not possible in this experiment because Azure is designed as a Platform-as-a-Service (PaaS) and does not provide the needed Java management interfaces for the current version of the Techila Deployment Tool.

The configuration tests examined how MATLAB-based applications fare in a 256 CPU core virtual HPC environment. The findings show that configuration of an instance was slower in Azure than the other cloud offerings. They reason that this could be do to Azure’s PaaS-based design. AWS and GCW, however provide direct access to the infrastructure. “Because of the limitations of Azure’s PaaS design Techila middleware can not support Peer-to-Peer (P2P) transfer technology inside the HPC environment in Azure,” note the report’s authors.

Another key observation was that configuring the AWS instance was quicker with Linux than Windows. While the experimenters can’t confirm the basis for this, they think it might be explained by file system capabilities. The data transferred was said to contain approximately 33,000 files, and it’s been suggested that the file system on Windows performs slower when handling a large number of rather small files.

The HPC application tests looked at three common application scenarios:

  • model calibration (using MATLAB code)
  • portfolio simulation (implemented in R)
  • machine learning (implemented in C++)

Techila provides detailed assessments of each application case, with charts that include Wall-clock time, price per CPU core and cost of cloud computing.

Here are several of the interesting observations made by the experimenters:

For MATLAB code:

“The findings show that in this particular scenario MATLAB seems to perform better in Windows environment than on Linux environments.”

For R users:

“An interesting observation is related to the performance of AWS c3.8xlarge performance. When compared to Azure A8 and Azure Extra Large, we can see that in this case, the Azure Extra Large provides a very similar performance as AWS c3.8xlarge, and Azure A8 provides double performance compared to AWS c3.8xlarge and Azure Extra Large. Because the cost of Azure Extra Large is affordable and Azure supports a fine granularity billing, this can make Azure Extra Large a great value option for users of R programming language.”

“Another interesting observation is that in this case AWS c3.xlarge with Linux provides clearly better performance than AWS c3.8xlarge running Windows operating system.”

For machine learning:

“Another interesting observation is that in this specific case Azure A8 and AWS c3.8xlarge with Windows operating system provided very similar performance, despite of differences observed in other test cases. It was suggested that this could be related to the fact that some scenarios are well suited for hyper threading and can benefit of it. Because of this, if the goal is to get the most out of a hyper threading platform, it is important to understand the suitability of the applications for the platform.”

Based on the results of Techila’s first cloud benchmarking round, the company is confident that cloud computing will have a role to play in HPC. The experimenters also believe that cloud will have a profound democratizing effect on HPC, writing:

“HPC will no longer be science, which would require special training and expensive upfront investments. Cloud will bring HPC to new desks and simplified user experience will empower new users to benefit of it.”

The testing process also served as a reminder that commercial cloud platforms follow more of a hardware path in that they don’t use version numbering. Vendors are constantly pushing out new instance types and features, and prices too are under constant revision. Because of this, any benchmarking must be regarded as work in progress. To stay relevant with these changes, Techila is planning to keep its report up to date by repeating tests periodically.

Techila also raises the point that elasticity is not truly unlimited. Resource provisioning, even at the scale of Amazon, etc., is still limited by physical boundaries. Aside from impacting the planning stage, Techila maintains that the physical architecture is the reason why HPC in the cloud needs middleware.

“Performing such experiments in a loosely coupled infrastructure, such as the cloud, requires a middleware, which enables horizontal scaling and can hide the possible nonlinearities of the physical infrastructure,” the report states. “After all, cloud is built of very similar units what we see in our offices. When we come to the limits to the physical unit’s scalability, we need a solution, which enables scaling over the limit, which in this experiment was the Techila HPC middleware.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This