HP Targets HPC with New Approach to Water Cooling

By Nicole Hemsoth

June 10, 2014

HP has announced a new family of high performance computing systems that target a balance between high density, energy efficiency, and raw performance. The line, called “HP Apollo” is divided in half for key workloads and needs, with the air-cooled Apollo 6000 system aimed at enterprise users and the liquid-cooled Apollo 8000 focused on large-scale supercomputing sites.

As many remember, last year we followed the announcement of the new Peregrine supercomputer at the National Renewable Energy Laboratory (NREL). The warm water-cooled system set the bar for efficiency, but little did we know then that HP would roll out an entire line to replicate that success. HP saw the value of the approach while completing the system for NREL and has since learned lessons about expanding the same system for both new and existing air-cooled datacenters. They’re hoping the balanced push of high density and big energy savings will speak both to the national lab set and commercial datacenter operators who don’t have the luxury of, say a Facebook, to build as big as they wish with the comfort of cheap power that they can blow back into the sky as waste heat.

The Apollo system features a scalable rack design that allows for 144 servers in a rack, which HP says means “four times the teraflops per rack compared to air-cooled designs.” HP’s Ed Turkel said that this translates into the elimination of over 3.800 tons of carbon dioxide waster from a datacenter over the course of a year. Further, the Apollo 8000 features a patented, novel warm water cooling system that HP’s Ed Turkel provides “liquid cooling without the risk.” HP’s approach avoids the use of dripless connectors and other safeguards against water touching any of the components. The cooled components release hot water, which can be recirculated to provide building heat. In fact, one of the prime sites to see the Apollo 8000 line in action is where it was conceptualized—at the NREL Peregrine supercomputer site.

The Apollo 8000 at its base starting line consists of an Apollo 8000 standard-sized rack and the Apollo 8000 iCDU rack.


These are outfitted with the HP Proliant XL730f server and HP’s InfiniBand switch.


As Turkel told us, when NREL set forth designing the type of system that would showcase their position as both an energy efficient research leader as well as practitioner of efficient practices, they knew that part of their design would incorporate warm water cooling. This initial RFP set HP’s development wheels in motion as the team tried to find a way to integrate risk-free, high-density water-cooled supercomputing capabilities at NREL within space and budget limitations.

Luckily, NREL was able to design the center from the ground up to accommodate the plumbing and other infrastructure to support both a water cooled supercomputer and the ability to carry the waste heat in water form throughout the building, but Turkel says that his team is confident that retrofitting an air-cooled datacenter for the same environment NREL has is also practical and affordable, especially after their work in making some of the piping and other components more “modular” in nature so user facilities can circumvent some of the custom pipe cutting that had to go on at the first NREL site.

Turkel said that one testament to the success of the datacenter waste heat’s potential to heat the area is the fact that the sidewalk leading up to the NREL supercomputing site is always free of ice and snow during the cold Colorado winter. NREL extended the pipes that carry heat from the servers to just under the pavement.

But for NREL, the project means more than recycling supercomputer heat—it has lead to close to a million dollars in energy savings, both in heating costs and in overall efficiency of the supercomputers themselves. Further, since the components run at a stable temperature, they’re able to operate their Xeon Phi in ongoing turbo mode.

This is a huge improvement in how NREL has designed and implemented new supercomputing facilities. Steve Hammond, director of Computational Sciences at NREL, compared the current trend of air cooling to setting a glass of lemonade on a kitchen counter during a hot summer day and keeping it cold by cranking up the air conditioning in the room. “It’s incredibly wasteful—it just doesn’t make sense,” he told us.

“For us, warm water cooling was the key approach to making the efficiency targets work. As a cooling medium, liquids have about 1,000 times the efficiency of air,” said Hammond. “A juice glass full of water has the cooling capacity of a room full of air. And the pump energy needed to move that juice glass of water, to eject the heat from the system, is less than the fan energy needed to move that room full of air—much less.”

A great deal of the decision to move to hot water cooling was fed by existing problems, both because of efficiency or safety, with current solutions on the liquid and air-cooling fronts. As Hammond explained, making the decision to circulate past the air cooling decision was simple because the inefficiencies and waste are clear.

While many of the hyperscale datacenter giants tend to use air cooling, their greenfield facilities are placed where space and power are cheap and plentiful. Although certainly not the most efficient or carbon-aware, many HPC datacenters, including the new high performance computing facility where the Peregrine supercomputer is housed at NREL, are limited all around—space is a precious commodity and the thought of wasting all of the heat generated by their constant research by blowing it up into the sky would be completely counter to their center’s mission of “practicing what is preached” in terms of energy research.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art of “The Grand Hotel Of The West,” contrasted nicely with Read more…

By Arno Kolster

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This