Panasas Boosts ActiveStor with Fat Drives, RAID 6+

By Timothy Prickett Morgan

June 12, 2014

Disk drives keep getting fatter, and the time to rebuild the data on them keeps taking longer and longer. And so the engineers at disk array maker Panasas have been working for the past several years to rework RAID data protection so it is more suitable to large scale parallel file systems. The culmination of this work is the new RAID 6+ feature of the PanFS 6.0 parallel file system, which launched this week concurrent with an update to the ActiveStor arrays that will see much more capacious disk drives added to the machines.

Garth Gibson, chief scientist at Panasas, was one of the co-authors of the original RAID research paper that came out of the University of California at Berkeley, suggesting that with the right data protection algorithms, an array of relatively cheap disk drives could be made more resilient than very expensive and larger disk subsystems commonly attached to high-end systems. The RAID paper is a quintessential example of using a parallel architecture to boost throughput and increase capacity while lowering cost and power consumption compared to monolithic systems. (In this case, 14-inch IBM 3380 mainframe disk drives versus an array of 3.5-inch SCSI disks from Conner Peripherals.) It is fitting that Gibson, who is still very much active in Panasas, has taken another swipe at RAID data protection and has come up with a new RAID 6+ triple parity protection scheme for PanFS 6.0. The update also includes what Panasas calls per-file distributed RAID, which as the name suggests protects at the file level and does not require for a whole disk drive to be rebuilt when there is a failure in a RAID set.

With RAID data protection being around for a long time, and with many variations that dice and slice parity data (used to recover lost disks) in different ways, it might seem strange that Panasas is talking about improving RAID algorithms. But in many cases, RAID controllers are bottlenecks in array performance, or RAID protection is not used and more brute force data replication methods are used instead. Panasas would content that this is wasteful and has invested to make RAID data protection better as it scales across larger and larger arrays.

“We know that unstructured data growth is driving requirements for next-generation storage arrays in the enterprise and in HPC,” explains Faye Pairman, president and chief executive officer at Panasas, and, citing statistics that data growth is expected to increase by 800 percent over the next five years, “four-fifths of that data is going to be unstructured.”

“We think the explosion of data drives a different view on availability and reliability,” notes Pairman, “HPC always leads the way, and there is almost an insatiable desire for more processing and that always drives storage attachment rates. Whether it is traditional HPC or scale-out enterprise with unstructured data, we think that the size of the deployments and the size of the disk drives used today really dictated a need for a different approach to scalability and availability.”

The ActiveStor arrays differ from many network-attached storage arrays in that the architecture of the hardware and the software is such that there are no filers or traffic managers in the datapath between the systems requesting data and the storage blades that are the building block of the ActiveStor machines. The file system is parallel and the data paths are parallel, so a blade can pass data directly from a blade in the ActiveStor array to a cluster node; there is no bottleneck.

The problem with traditional RAID arrays (whether they are based on disk or flash drives or a mix of the two) is that reliability worsens linearly as you scale up the array. The more devices you have, the higher the probability of a failure at any given time. Also, on RAID arrays, if you lose single sectors on a disk drive, you have to rebuild an entire drive. With RAID 5 and RAID 6 protection, the parity data that is used to rebuild missing files using the RAID algorithm is spread across multiple drives and is used to recreate the data when a disk crashes (you basically run the algorithm that spread a file across the drives backwards, adding in the parity data to calculate the missing bits). This is all well and good until you have 4 TB or 6 TB disk drives, which take forever to rebuild, and it is even less practical when you have hundreds to thousands of such fat disks in an array. At any given time, a disk is failing and recovering, and this impacts performance for a RAID group. In some arrays, losing a RAID group means the whole file system is down, and in a worst case scenario, it can take weeks to restore an entire file system. While the file system is down, the system is down, even if only one file is actually the only thing that is corrupted.

“We don’t want to rebuild an entire gigantic array just to recover a number of files,” explains Pairman. “And we are addressing this notion that the system is either all up or all down. Up until now, there was no process to be able to access unaffected files.”

Concurrent with the launch of the new PanFS 6.0 is a set of new hardware, called the ActiveStor 16 arrays. The new arrays employ the UltraStar He6 disk drives from HGST (formerly a unit of Hitachi and now owned by Western Digital). These are the first 6 TB drives on the market, and that 50 percent increase in density is made possible because helium gas is less turbulent than air. The lower turbulence also cuts energy use by the 3.5-inch disk drive by 23 percent.

The ActiveStor arrays have two types of blades, a storage blade and a director blade. As the name suggests, the director blade manages the system and also keeps metadata about where files are stored on the parallel file system. With the ActiveStor 16 update, Panasas is shifting to a faster quad-core 2.53 GHz “Jasper Forest” processor from Intel. (This is a chip made for embedded applications). This director blade also has 48 GB of if own memory used as metadata cache, and this extra CPU and memory capacity helps improve RAID rebuilds as well as small file serving and metadata performance.

The storage blades on the ActiveStor 16 have their components right sized for the fatter 6 TB disks, with a larger 240 GB solid state disk for serving up small files and metadata and optimized to run the RAID6+ protocol. The storage blade has a single-core version of the Jasper Forest Intel processor, and it has 8 GB of its own memory that is used as cache plus two 6 TB drives. A 4U shelf of the ActiveStor 16 arrays has 122.4 TB of capacity and 1.5 GB/sec of bandwidth across its 20 storage blades. Up to 100 shelves, with a maximum of 2,000 disks and 1,000 SSDs, can be lashed together in a single global namespace that spans 12 PB of capacity and delivers 150 GB/sec of bandwidth out of the PanFS file system.

With RAID 6, two copies of the parity data used to reconstruct a failed disk drive are spread across the RAID group. With the RAID 6+ triple parity protection cooked up by Gibson and his colleagues at Panasas, the three copies of the parity data allow for protection against two simultaneous drive failures and single sector errors on multiple drives. This is about 150X more reliable than dual parity approaches in RAID arrays, explains Geoffrey Noer, senior director of product marketing at Panasas. The RAID 6+ algorithm carries about a 25 percent capacity overhead, compared to around 18 percent with most dual parity RAID 6 controllers, according to Noer.

While the RAID 6+ triple parity is important, so is the per-file distributed RAID that is also part of the new PanFS 6.0. With this feature, the rebuilding process scales linearly with the number of directors in the whole parallel file system, and importantly, the more drives you have, the less dramatic the recovery measures have to be. Here is a visual to illustrate how the recovery is less arduous when three drives fail on an array with twenty drives compared to one with only ten drives:

Panasas-per-file-RAID

On a traditional RAID 6 array with ten fixed drives and a RAID controller, if you lose three drives, you have to restore all the files. On an ActiveStor array running the PanFS software, as you scale up the drives, the percent of files that need to be restored goes down because data is spread further apart on the increasing number of drives. So, for instance, Panasas says that on an ActiveStor with 40 drives, three disk failures could mean having to restore a few percent of the files, but as you scale up to 2,000 drives the share of files that needs to be restored gets very close to zero. On an array with 1,000 drives, about one in 200 million files will need to be restored after a three disk failure, according to Noer. And, thanks to the Extended File System Availability feature in PanFS, all of the files that are not affected by a three-drive failure event can be accessed normally. The dead files have to be restored from the RAID parity data or from an archive.

“A file system that is ten times larger rebuilds ten times faster,” says Noer, providing a rule of thumb. “This is important because if you have ten times the number of drives, but the rebuild is one tenth of the time, your risk has stayed the same.” When you add in the per-file distributed RAID, then scaling up the file system by a factor of ten actually increases the reliability of the data in the file system by a factor of a thousand.

Here is the pricing on the ActiveStor 14 and 16 arrays:

Panasas-ActiveStor-16-pricing

Panasas is taking orders for the ActiveStor 16 systems now and expects to start shipping the PanFS file system and the new arrays in September. PanFS 6.0 will be available to customers using ActiveStor 11, 12, and 14 systems (there was no 13 generation) who have their systems under current maintenance contracts. PanFS 6.0 ships by default on the ActiveStor 16 arrays.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This