Panasas Boosts ActiveStor with Fat Drives, RAID 6+

By Timothy Prickett Morgan

June 12, 2014

Disk drives keep getting fatter, and the time to rebuild the data on them keeps taking longer and longer. And so the engineers at disk array maker Panasas have been working for the past several years to rework RAID data protection so it is more suitable to large scale parallel file systems. The culmination of this work is the new RAID 6+ feature of the PanFS 6.0 parallel file system, which launched this week concurrent with an update to the ActiveStor arrays that will see much more capacious disk drives added to the machines.

Garth Gibson, chief scientist at Panasas, was one of the co-authors of the original RAID research paper that came out of the University of California at Berkeley, suggesting that with the right data protection algorithms, an array of relatively cheap disk drives could be made more resilient than very expensive and larger disk subsystems commonly attached to high-end systems. The RAID paper is a quintessential example of using a parallel architecture to boost throughput and increase capacity while lowering cost and power consumption compared to monolithic systems. (In this case, 14-inch IBM 3380 mainframe disk drives versus an array of 3.5-inch SCSI disks from Conner Peripherals.) It is fitting that Gibson, who is still very much active in Panasas, has taken another swipe at RAID data protection and has come up with a new RAID 6+ triple parity protection scheme for PanFS 6.0. The update also includes what Panasas calls per-file distributed RAID, which as the name suggests protects at the file level and does not require for a whole disk drive to be rebuilt when there is a failure in a RAID set.

With RAID data protection being around for a long time, and with many variations that dice and slice parity data (used to recover lost disks) in different ways, it might seem strange that Panasas is talking about improving RAID algorithms. But in many cases, RAID controllers are bottlenecks in array performance, or RAID protection is not used and more brute force data replication methods are used instead. Panasas would content that this is wasteful and has invested to make RAID data protection better as it scales across larger and larger arrays.

“We know that unstructured data growth is driving requirements for next-generation storage arrays in the enterprise and in HPC,” explains Faye Pairman, president and chief executive officer at Panasas, and, citing statistics that data growth is expected to increase by 800 percent over the next five years, “four-fifths of that data is going to be unstructured.”

“We think the explosion of data drives a different view on availability and reliability,” notes Pairman, “HPC always leads the way, and there is almost an insatiable desire for more processing and that always drives storage attachment rates. Whether it is traditional HPC or scale-out enterprise with unstructured data, we think that the size of the deployments and the size of the disk drives used today really dictated a need for a different approach to scalability and availability.”

The ActiveStor arrays differ from many network-attached storage arrays in that the architecture of the hardware and the software is such that there are no filers or traffic managers in the datapath between the systems requesting data and the storage blades that are the building block of the ActiveStor machines. The file system is parallel and the data paths are parallel, so a blade can pass data directly from a blade in the ActiveStor array to a cluster node; there is no bottleneck.

The problem with traditional RAID arrays (whether they are based on disk or flash drives or a mix of the two) is that reliability worsens linearly as you scale up the array. The more devices you have, the higher the probability of a failure at any given time. Also, on RAID arrays, if you lose single sectors on a disk drive, you have to rebuild an entire drive. With RAID 5 and RAID 6 protection, the parity data that is used to rebuild missing files using the RAID algorithm is spread across multiple drives and is used to recreate the data when a disk crashes (you basically run the algorithm that spread a file across the drives backwards, adding in the parity data to calculate the missing bits). This is all well and good until you have 4 TB or 6 TB disk drives, which take forever to rebuild, and it is even less practical when you have hundreds to thousands of such fat disks in an array. At any given time, a disk is failing and recovering, and this impacts performance for a RAID group. In some arrays, losing a RAID group means the whole file system is down, and in a worst case scenario, it can take weeks to restore an entire file system. While the file system is down, the system is down, even if only one file is actually the only thing that is corrupted.

“We don’t want to rebuild an entire gigantic array just to recover a number of files,” explains Pairman. “And we are addressing this notion that the system is either all up or all down. Up until now, there was no process to be able to access unaffected files.”

Concurrent with the launch of the new PanFS 6.0 is a set of new hardware, called the ActiveStor 16 arrays. The new arrays employ the UltraStar He6 disk drives from HGST (formerly a unit of Hitachi and now owned by Western Digital). These are the first 6 TB drives on the market, and that 50 percent increase in density is made possible because helium gas is less turbulent than air. The lower turbulence also cuts energy use by the 3.5-inch disk drive by 23 percent.

The ActiveStor arrays have two types of blades, a storage blade and a director blade. As the name suggests, the director blade manages the system and also keeps metadata about where files are stored on the parallel file system. With the ActiveStor 16 update, Panasas is shifting to a faster quad-core 2.53 GHz “Jasper Forest” processor from Intel. (This is a chip made for embedded applications). This director blade also has 48 GB of if own memory used as metadata cache, and this extra CPU and memory capacity helps improve RAID rebuilds as well as small file serving and metadata performance.

The storage blades on the ActiveStor 16 have their components right sized for the fatter 6 TB disks, with a larger 240 GB solid state disk for serving up small files and metadata and optimized to run the RAID6+ protocol. The storage blade has a single-core version of the Jasper Forest Intel processor, and it has 8 GB of its own memory that is used as cache plus two 6 TB drives. A 4U shelf of the ActiveStor 16 arrays has 122.4 TB of capacity and 1.5 GB/sec of bandwidth across its 20 storage blades. Up to 100 shelves, with a maximum of 2,000 disks and 1,000 SSDs, can be lashed together in a single global namespace that spans 12 PB of capacity and delivers 150 GB/sec of bandwidth out of the PanFS file system.

With RAID 6, two copies of the parity data used to reconstruct a failed disk drive are spread across the RAID group. With the RAID 6+ triple parity protection cooked up by Gibson and his colleagues at Panasas, the three copies of the parity data allow for protection against two simultaneous drive failures and single sector errors on multiple drives. This is about 150X more reliable than dual parity approaches in RAID arrays, explains Geoffrey Noer, senior director of product marketing at Panasas. The RAID 6+ algorithm carries about a 25 percent capacity overhead, compared to around 18 percent with most dual parity RAID 6 controllers, according to Noer.

While the RAID 6+ triple parity is important, so is the per-file distributed RAID that is also part of the new PanFS 6.0. With this feature, the rebuilding process scales linearly with the number of directors in the whole parallel file system, and importantly, the more drives you have, the less dramatic the recovery measures have to be. Here is a visual to illustrate how the recovery is less arduous when three drives fail on an array with twenty drives compared to one with only ten drives:

Panasas-per-file-RAID

On a traditional RAID 6 array with ten fixed drives and a RAID controller, if you lose three drives, you have to restore all the files. On an ActiveStor array running the PanFS software, as you scale up the drives, the percent of files that need to be restored goes down because data is spread further apart on the increasing number of drives. So, for instance, Panasas says that on an ActiveStor with 40 drives, three disk failures could mean having to restore a few percent of the files, but as you scale up to 2,000 drives the share of files that needs to be restored gets very close to zero. On an array with 1,000 drives, about one in 200 million files will need to be restored after a three disk failure, according to Noer. And, thanks to the Extended File System Availability feature in PanFS, all of the files that are not affected by a three-drive failure event can be accessed normally. The dead files have to be restored from the RAID parity data or from an archive.

“A file system that is ten times larger rebuilds ten times faster,” says Noer, providing a rule of thumb. “This is important because if you have ten times the number of drives, but the rebuild is one tenth of the time, your risk has stayed the same.” When you add in the per-file distributed RAID, then scaling up the file system by a factor of ten actually increases the reliability of the data in the file system by a factor of a thousand.

Here is the pricing on the ActiveStor 14 and 16 arrays:

Panasas-ActiveStor-16-pricing

Panasas is taking orders for the ActiveStor 16 systems now and expects to start shipping the PanFS file system and the new arrays in September. PanFS 6.0 will be available to customers using ActiveStor 11, 12, and 14 systems (there was no 13 generation) who have their systems under current maintenance contracts. PanFS 6.0 ships by default on the ActiveStor 16 arrays.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ lar Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HP Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This