NICS Tackles Big Science with Beacon

June 16, 2014

With support from the National Science Foundation and the University of Tennessee, Knoxville, the National Institute for Computational Science (NICS) is expanding access to Beacon, its newest HPC cluster, providing researchers with a powerful research tool. Efforts are underway to optimize a number of science and engineering applications for this system utilizing both Intel Xeon processors and Intel Xeon Phi coprocessors.

By working with researchers to optimizing scientific codes to run on the advanced Intel architecture, the NICS team has determined that Beacon can register impressive performance gains for its users. In particular, scientists and engineers investigating such complex fields as nano-electronics, astrophysics, chemistry, biochemistry, subatomic physics and applied mathematics will be able to tackle larger, more complicated problems while controlling costs.

NICS’s drive to create the high performance computer cluster was the result of a number of factors. Optimizing application performance was at the top of the list – researchers needed to be able to modernize their code, taking full advantage of any inherent parallelism in order to manage increasingly demanding big science applications.

Another challenge facing the NICS team was the need to accommodate a wide variety of users with an equally diverse set of requirements. For example, a researcher running a complex simulation might need extensive raw computer power, while a bioinformatics scientist might require large amounts of memory.

For NICS, the primary driver was to learn how to build more efficient clusters to support researchers investigating increasingly complex, computer problems without significantly increasing hardware costs, power and cooling requirements, or software development costs.

Building Beacon

The solution, the Beacon system, is a Cray CS300-AC cluster supercomputer equipped with Intel Xeon processers and Intel Xeon Phi coprocessors. The system includes 48 compute nodes and six I/O nodes, with a total of 768 conventional cores and 11,520 accelerator cores. Compute nodes include Intel Xeon processors E5-2670 and Intel Xeon Phi coprocessors 5110P. Integrated into the storage environment are Intel Solid-State Drives. To optimize code, software developers use the Intel Cluster Studio XE suite.

Building a hybrid system consisting of Intel processors and coprocessors opened up new possibilities for software development and infrastructure testing by the NICS team. According to Glenn Brook, CTO at the Joint Institute for Computational Sciences at the University of Tennessee, “…the (hybrid) environment allows us to explore a variety of programming and processing scenarios. At the same time, the environment is designed to help us examine energy efficiency, data movement, and other variables. We hope to find new ways to maximize performance, minimize energy consumption, and reduce costs.”

Intel provided Intel Cluster Studio XE software development tools to help researchers optimize codes for the new architecture. The fact that team members were already familiar with the tools streamlined the optimization work. Noted Brook, “With the Intel Software Development Tools, optimizing for the Intel Xeon Phi coprocessor is not substantially different than optimizing for the Intel Xeon processor E5 family.”

Speeding Up Performance, Reducing Costs

Working with the optimized code, the NICS researchers are realizing a number of benefits. For example, Brook reports that an optimized computational fluid dynamics (CFD) code achieves about 2.25 times the performance on an Intel Xeon Phi coprocessor as compared to running the identical code on two Intel Xeon E5-2670 processors. “Those results indicate that researchers can build clusters that use Intel Xeon Phi coprocessors to boost performance while reducing costs,” he says.

And, Brook adds, ultimately, Beacon’s enhanced price/performance allows researchers to solve larger, more complex problems while controlling costs. By using Intel Xeon Phi coprocessors, organizations can build smaller clusters with fewer nodes and achieve the same performance as much larger clusters – a savings in hardware acquisition, energy costs, and floor space.

The Beacon project also demonstrates the feasibility of performing big science on sustainable systems. The cluster’s processing power earned it a spot on the November 2012 and June 2013 Top500 list, while its reduced energy consumption allowed Beacon to take top ranking on the November 2012 Green500 list. The cluster was rated at nearly 2.5 billion floating-point operations per second (gigaFLOPS) per watt.

“We hope to expand the Beacon project, creating more of a production environment that is available for science and engineering research,” Brook says. “At the same time, we will continue to evaluate the ways the Intel MIC Architecture can help reduce energy consumption and control the demand for human resources in software development.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NSF Awards $10M to Extend Chameleon Cloud Testbed Project

September 19, 2017

The National Science Foundation has awarded a second phase, $10 million grant to the Chameleon cloud computing testbed project led by University of Chicago with partners at the Texas Advanced Computing Center (TACC), Ren Read more…

By John Russell

NERSC Simulations Shed Light on Fusion Reaction Turbulence

September 19, 2017

Understanding fusion reactions in detail – particularly plasma turbulence – is critical to the effort to bring fusion power to reality. Recent work including roughly 70 million hours of compute time at the National E Read more…

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conferen Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

U of Illinois, NCSA Launch First US Nanomanufacturing Node

September 14, 2017

The University of Illinois at Urbana-Champaign together with the National Center for Supercomputing Applications (NCSA) have launched the United States's first computational node aimed at the development of nanomanufactu Read more…

By Tiffany Trader

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakt Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

MIT-IBM Watson AI Lab Targets Algorithms, AI Physics

September 7, 2017

Investment continues to flow into artificial intelligence research, especially in key areas such as AI algorithms that promise to move the technology from speci Read more…

By George Leopold

Need Data Science CyberInfrastructure? Check with RENCI’s xDCI Concierge

September 6, 2017

For about a year the Renaissance Computing Institute (RENCI) has been assembling best practices and open source components around data-driven scientific researc Read more…

By John Russell

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This