The UberCloud Experiment Continues…

By Wolfgang Gentzsch and Burak Yenier

June 16, 2014

Improved product quality, faster time to market and ultimately increased ROI have long been associated with the adoption of HPC tools. The benefits that engineers and scientists can expect from using technical computing in their research, design and development processes can be huge. In spite of this, there is still unmet need with relatively few scientists and manufacturers using servers or clusters when designing and developing their products on computers. The majority of virtual prototyping and large-scale data modeling is still performed on desktop or laptop computers. It’s not surprising then that many of these users face problems stemming from the lack of performance of their machines. Obtaining additional computing power means either purchasing a server outright or using a cloud-based offering.

Many system vendors have developed a complete set of products, solutions and services for “high performance computing” (HPC) and buying an HPC server for an SME is no longer out of reach. Owning an HPC server, however, is not necessarily the best idea in terms of cost-efficiency or maintenance, because the Total Cost of Ownership (TCO) of such a machine is pretty high, and maintaining such a system requires additional manpower and expertise.

The other option today is to use an HPC Cloud solution that allows engineers and scientists to keep using their workstation for daily design and development work, and to “burst” larger, more complex jobs into the Cloud when needed. Thus, users have access to quasi infinite computing resources that offer higher-quality results. A Cloud solution helps reduce capital expenditure, offers greater business agility by dynamically scaling resources up and down as needed, and is only paid for when used.

The UberCloud Experiment Accelerating HPC Cloud Adoption

Since July 2012 the UberCloud Experiment has attracted more than 1500 organizations from 72 countries. We were able to build 152 teams in CFD, FEM, Biology, Finance, and other domains, and to publish many case studies reporting about different applications, experience, and lessons learned. UberCloud TechTalk has been founded providing educational lectures for our community. And the UberCloud Exhibit offers a Cloud services catalogue where community members can exhibit their Cloud related services or select the services which they want to use for their team experiment or for their daily work. Sponsored by Intel and HPCwire in 2013, the first Compendium with 25 HPC Cloud case studies received the HPCwire Readers Choice Award for the best HPC Cloud implementation. Now, in June 2014, the second Compendium of UberCloud case studies has been published, sponsored by Intel and HPCwire, which can be downloaded for free from here.

The UberCloud Experiment provides a platform for scientists and engineers to explore, learn and understand the end-to-end process of accessing and using HPC Cloud resources, and to identify and resolve the roadblocks. End-users, software providers, resource providers, and computing experts collaborate in teams to jointly solve the end-users’ application in the Cloud. Let’s start by defining what roles each stakeholder plays to make service-based high performance technical computing in the cloud come together:

End-user
– A typical example is a small or medium size manufacturer in the process of designing, prototyping and developing its next-generation product. These users are prime candidates for HPC-as-a-Service when in-house computation on workstations has become too lengthy and acquiring additional computing power in the form of a server is too cumbersome.

Application software provider
– These are software owners of all stripes, including ISVs, public domain software organizations and individual developers. The UberCloud Experiment prefers rock-solid software, which has the potential to be used on a wider scale.

Resource provider
– This pertains to anyone who owns HPC resources networked to the outside world. A classic HPC center would fall into this category as well as a standard datacenter used to handle batch jobs, or a cluster-owning commercial entity that is willing to offer up cycles to run non-competitive workloads during periods of low CPU-utilization.

Computing experts
– This group includes individuals and companies with HPC expertise, e.g. in areas like cluster management and software porting and optimizing. It also encompasses PhD-level domain specialists with in-depth application knowledge. These experts work as team leaders, with end-users, computer centers and software providers to help glue the pieces together.

For example, suppose the end-user is in need of additional compute resources to increase the quality of a product design or to speed up a product design cycle – say for simulating more sophisticated geometries or physics or for running many more simulations for a higher quality result. That suggests a specific software stack, domain expertise and even hardware configuration. The general idea is to look at the end-user’s tasks and software and select the appropriate resources and expertise that match certain requirements.

Cloud Case Studies from the UberCloud Experiment

As a glimpse into the wealth of practical use cases, we chose four HPC Cloud projects out of the 152 UberCloud Experiments: in life sciences teams 61 and 89, and in CAE teams 118 and 142.

Team 61: Molecular dynamics of the mutant PI3Kα protein

The end-user of this team was Zoe Cournia from the Biomedical Research Foundation of the Academy of Athens. Resource provider was the GRNET-Okeanos IaaS Cloud service, represented by Vangelis Floros and Stefanos Gerangelos from the Greek Research and Technology Network S.A. And HPC expert was Dominique Dehareng from the Center for Protein Engineering at the University of Liège. Open source software Gromacs 4.6.1 was used for the simulations.

Cancer is a leading cause of death worldwide, accounting for 7.6 million deaths in 2008 according to the World Health Organization. This number is expected to increase to 21 million by 2030. One of the signaling pathways which, when deregulated, becomes centrally involved in several types of cancers, like colon, mammary, and endometrial tumorigenesis, is served by phosphoinositide-3-kinase alpha (PI3Kα). The importance of PI3Kα in cancer is highlighted by the discovery that PIK3CA, the gene encoding the catalytic p110α subunit of PI3Kα, is frequently mutated in human malignancies. The goal of this project was to gain insights into the oncogenic mechanism of two commonly expressed PI3Kα mutants by studying their conformational changes with Molecular Dynamics (MD) simulations, in comparison with the PI3Kα wild-type (normal, non-cancerous) protein. The utilization of cloud computing in performing MD simulations of mutant PI3Kα with Gromacs was examined in this case study.

UberCloud_Fig1

Figure 1: The protein PI3Ka is depicted in ribbons and is placed in a water box, shown as red dots.

The cloud computing service that was provided was a free and very efficient service. Cloud computing proved to be an extremely easy process as compared to building and maintaining your own cluster. The team was provided with a VM with 8 cores and the possibility of building a cluster of up to 64 cores connected via Ethernet network. In the 8 cores, the MD simulation of the mutant PI3Kα protein scaled linearly and did run faster when compared to in-house simulations. Team communications through BaseCamp were very efficient. Collaborative work over the Internet, using on-line resources like cloud computing hardware and open source software such as Gromacs, is an efficient alternative to in-person meetings and in-house calculation servers.

More details about this case study can be found in the second UberCloud Compendium which can be downloaded here for free.

Team 89:
Performance Analysis of GROMACS Molecular Dynamics for Simulating Enzyme Substrate in the Cloud

The end-users of this team were Pravin Kumar R, Thirupathi Jatti, Soma Ghosh, Satish Nandagond, and Naveen Kulkarni from Polyclone Bioservices. Patrice Calegari and Marc Levrier were from resource provider Bull ServiWare providing eXtreme factory cloud services. Jaap Flohil from Foldyne was the team expert and Dennis Nagy from BeyondCAE the UberCloud mentor of the team.

The team focused on evaluating the performance of double precision MPI-enabled GROMACS 4.6.3 on 25 Bullx 510 blades (each 16-core Intel SNB, total 400 cores) for peta-scaling molecular dynamics simulations. The activities were organized into three tasks: install and optimize GROMACS performance on the Bull extreme factory cluster; install accessory tools to analyze simulation data; and test different multi-scale molecular systems involving enzyme substrate complexes on the cluster. The starting point of eEF (enzyme engineering framework), Polyclones’ framework for enzyme engineering, is to conduct molecular dynamics (MD) studies and calculate different parameters using the MD trajectories.

UberCloud_Fig2

Figure 2: Protein enclosed in a box of water and ions. We can study proteins in atomic detail, down to the movements of individual water molecules (red/white balls and stick model), ions (purple), and the protein itself shown in the surface model (blue and green represents macromolecular dimer form of the protein).

Using 400 cores for MD studies was extremely helpful in estimating the time and resource for the partial completion of an enzyme engineering project using eEF. Bandwidth and latency were excellent. The remote visualization system was used to analyze huge (100 GB) simulation data. The web interface from the eXtreme factory cloud helped in shooting the jobs, allocating the cores for different jobs simultaneously, and also organizing the output results. The XF team installed and built a web interface for Gromacs, which can be used seamlessly to run and analyze molecular dynamics.

UberCloud_Fig3

Figure 3: Performance trend as the number of cores increases for a system with ~120K particles.

More details about this case study can be found in the second UberCloud Compendium which can be downloaded here for free.

Team 118:
Coupling In-house FE Code with ANSYS Fluent CFD

The end user was Hubert Dengg from Rolls-Royce Deutschland, software providers were Wim Slagter and René Kapa from ANSYS, resource providers and team experts were Thomas Gropp and Alexander Heine from CPU 24/7, and Marius Swoboda from Rolls-Royce Deutschland acted as HPC/CAE expert.

In the present test case, a jet engine high pressure compressor assembly was the subject of a transient aerothermal analysis using FEA/CFD coupling technique. Coupling is achieved through an iterative loop with smooth exchange of information between the FEA and CFD simulations at each time step, ensuring consistency of temperature and heat flux on the coupled interfaces between the metal and the fluid domains. The aim of the HPC Experiment was to link ANSYS Fluent with an in-house FEA code. This was done by extracting heat flux profiles from the Fluent CFD model and applying them to the FE model. The FE model provides metal temperatures in the solid domain.

This conjugate heat transfer process is very consuming in terms of computing power, especially when 3D CFD models with more than 10 million cells are required. As a consequence, we thought that using cloud resources would have a beneficial effect regarding computing time.

The computation was performed on the 32 cores of two nodes with dual Intel Xeon processors. The calculation was done in cycles in which the FE code and Fluent CFD ran alternating, exchanging their results.

UberCloud_Fig4

Figure 4: Contours of total temperature for a jet engine component.

Outsourcing of the computational workload to an external cluster allowed the end user to distribute computing power in an efficient way – especially when the in-house computing resources were already at their limit.

Bigger models usually give more detailed insights into the physical behavior of the system.

In addition, the end user benefited from the HPC provider’s knowledge of how to setup a cluster, run applications in parallel based on MPI, create a host file, handle licenses, and prepare everything needed for turn-key access to the cluster.

More details about this case study can be found in the second UberCloud Compendium which can be downloaded here for free.

Team 142:
Virtual Testing of Severe Service Control Valve

End User was Mark A. Lobo from Lobo Engineering.
Autodesk provided Simulation CFD 360 (SimCFD) and the supporting cloud infrastructure. And the HPC/CAE application experts were Jon den Hartog and Heath Houghton from Autodesk.

UberCloud_Fig5

Figure 5: a control valve model with idealized flow path was used to minimize effects of a complex body cavity and trim design.

Flow control valve specifications include performance ratings in order for a valve to be properly applied in fluid management systems. Control systems sort out input parameters, disturbances and specifications of each piping system component to react and produce a desired output. System response is chiefly a function of the accuracy of control valves that respond to signals from the control system. Valve performance ratings provide information to the system designer that can be used to optimize control system response.

The premise of this project was not only to explore virtual valve testing, but to evaluate the practical and efficient use of CFD by the non-specialist design engineer. As a benchmark, the end user had no prior experience with the Autodesk software when the project initiated, no formal training in the software, and he was depended on the included tutorials, help utility, thorough documentation to produce good results and good data.

UberCloud_Fig6

Figure 6: Application Domain. The control valve restriction components or “trim” reduces the annular area as the cavity profile on the right moves to the left. The location of highest velocity is indicated in red.

One of the benefits for the end-user was that cloud computing enabled accessing a large amount of computing power in a cost effective way. Rather than owning the hardware and software licenses, engineers can pay for what they need when they need it, rather than making a substantial upfront investment. In this project, over 200 simulations were run in the cloud. Given the runtimes involved and allowing for data download upon completion of the runs, it is possible for all of these simulations to be solved within a day. For an engineer with 1 simulation license on a single workstation, this would have required 800 hours (approximately 30 days) to complete if the simulations were running nonstop one after another. Table 1 compares the approximate time and investment that would be required for various solving approaches.

Table : Comparison of Desktop, Cloud, and HPC Solving Options

Simulation Solving Approach

Approx Time to Complete

Investment Required

Local Desktop Machine

800 hours

(1 month)

Engineering Workstation +Simulation SW License
Local Desktop Machine + Cloud Computing

24 hours

(1 day)

Engineering Workstation +Simulation SW License +

$1200 Cloud Compute Fee

Local Desktop Machine + Private HPC Cluster + Multiple Solver Licenses

24 hours

(1 day)

Engineering Workstation +Simulation SW License +

30 Node Compute Cluster +

30 Simulation Solver Licenses

 

More details about this case study can be found in the second UberCloud Compendium which can be downloaded here for free.

The 2nd UberCloud Compendium with HPC Cloud Case Studies is intended as a resource for engineers, scientists, managers and executives who believe in the strategic importance of HPC as a Service, in the Cloud. It’s a collection of selected HPC Cloud case studies from the participants in Rounds 3 & 4 of the UberCloud Experiment. Among these case studies are candid descriptions of challenges encountered, problems solved, lessons learned, and recommendations. This second UberCloud Compendium can be downloaded here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Pioneering Programmers Awarded Presidential Medal of Freedom

November 30, 2016

In an awards ceremony on November 22, President Barack Obama recognized 21 recipients with the Presidential Medal of Freedom, the Nation’s highest civilian honor. Read more…

By Tiffany Trader

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This