Breaking: Detailed Results from Today’s Top 500 Fastest Supercomputers List

By Nicole Hemsoth

June 23, 2014

Greetings from Germany and the International Supercomputing Conference (ISC14) where, as happens each year, the bi-annual list of the top 500 fastest supercomputers is unveiled.

Usually, this happens with a great deal of fanfare and speculation over which machine will take the top position. However, this year, there is little surprise in the finding that the Chinese Tianhe-2 system, which blew all others out of the water when it was announced last year, held firmly onto its number one position. While you can view the specs of each of the machines in more detail at the TOP500 site, we wanted to use this time to gauge some of the overarching trends we’ve been observing in terms of performance curves over time, accelerator adoption, architecture choices and more. In short, after you browse this very familiar top ten, take a look at what’s really happening…

Top500_Top10

To review, the Tianhe-2 system, which stands at 33.86 petaflops (compared to the number two system at Oak Ridge National Lab, the Cray “Titan” machine, which offers 17.59 petaflops/s) has 16,000 nodes, each of which are outfitted with two Ivy Bridge and three Xeon Phis for a total of over 3 million cores is going to be a tough one to beat. As we noted earlier this year, China has plans to continue the build-out of this system in hopes of reaching exascale potential. The system is unique with a number of homegrown parts, including the TH Express-2 interconnect, OS, tooling and front-end processors. While it may be a powerhouse, the energy efficiency lags behind the “smaller” Titan machine. Tianhe-2 runs Linpack at 17.8 megawatts while the 261,632 core NVIDIA K20-boosted Cray system at Oak Ridge runs at 8.21 megawatts.

The IBM Sequoia system at Lawrence Livermore is holding steady at number three, which in its three years alive has topped out at 17.17 petaflops/s, not far behind Titan. For those not familiar with the list this further shows the Linpack benchmark performance chasm between the number one system and those that trail it—all of which in the top ten range between 17.59 petaflops/s at the top to 3.1 petaflops/s for #10. The 500th machine on the list runs at just a tick over the 133 teraflop/s peak mark.

For those familiar with the list in its last form in November, you’ll notice that there is only one change in the top ten—a Cray XC30 is now in place and running at 3.14 petaflops at an undisclosed U.S. government site. While other than this new, mysterious addition, there might not be any earth-shattering news on this Top 500 list, there are some trends that we’ve been monitoring over the last few list iterations—and some that have evolved since November. For instance, the United States, which once dominanted the Top 500, dropped from 265 systems during November’s listing to 233 on this 43rd Top 500.

Meanwhile, the number of Chinese systems in increasing. In addition to securing the number one spot by a significant margin, there are an additional 13 machines from China, bringing their total share of the Top 500 to 76. To put that in some perspective, the UK has 30, France has 27 and Germany has 23. Japan has contributed an additional two machines, bringing their total to 30.

When it comes to the overall list, performance is continuing to climb. The total of all machines on the November list is now 274 petaflops, compared to 250. To add further perspective, the total petaflop count across all machines reporting results was 223 petaflops. That sounds like a rather noteworthy increase until one takes a look at the long term growth line in performance…

Remember that strong performance development staircase we’ve steadily been climbing? If you take a look at the graphic below using the latest data from today’s Top 500 announcement, you’ll see that slight planing off in reach that we began to spot over the last year and a half. As our friends at TOP500 noted today, “From 1994 to 2008 [performance] grew by 90% per year. Since 2008 it only grows by 55% per year.” And when you take a close look at the list over the last couple of years, you’ll see that the reason why that declining figure isn’t more pronounced is simply because the top tier of the list is propping it up—most notably with the addition of the Tianhe-2 system, which holds 13.7% of the performance share of the entire list.

When examined as a whole, we’re falling off except at the highest end…but what does this mean for end user applications? Is high end computing getting smarter in terms of efficiency and software to where, for real-world applications, FLOPS no longer matter so much? Many argue that’s the case…and some will await the new HPCG benchmark and forgo Linpack altogether in favor of a more practical benchmark. That hasn’t had an impact yet on this summer’s list but over time it will be interesting to watch.

top500-performance

One gamechanger for the historical performance trends is certainly the mighty accelerator/coprocessor. But even the accelerator story has some interesting twists and turns to report. A total of 62 systems are using some form of accelerator or coprocessor technology, which is up slightly from 53 machines on the November list. Of those, 44 are using NVIDIA GPUs, 17 have deployed Xeon Phi and two have ATI Radeon as the booster of choice.

With that in mind, there’s another phenomenon that stands out. While this isn’t a suggestion that the performance leveling off is because of this, the trend around accelerator use isn’t quite as strong as it used to be either, as you can see on the historical development chart below. There are many reasons why this might be the case. For instance, national labs and scientific computing centers tend to be among the first to experiment with new technologies, although for GPUs in particular, this doesn’t completely match up since the real spike in NVIDIA-powered systems happens late in 2011–quite a long time after GPU computing began to take off. It’s possible to see in that spike for Intel when Xeon Phi landed in several shops as experimental technology as well, but even with a spike visible now, it’s difficult to see widespread adoption.

 

top500-acceleratorOf course, keep in mind that a tapering off of GPU or other accelerated systems doesn’t exactly mean that there is an overall slowdown. This is one segment of the HPC arena–there are many, many machines from academia and enterprise, that do not choose to run the HPL benchmark. Even if there are 20% of these machines missing from the list, the effect on that list would be felt in such a graphic. We asked Addison Snell of Intersect360 Research about the accelerator graphic above and he echoed this, noting that “Change in share in the Top 500 doesn’t necessarily reflect market trends. While Intel did gain share in microprocessors in 2013 over AMD and IBM Power, we also have seen a number of HPC systems with GPUs installed, which has risen to 44% of systems installed since the beginning of 2012.”

The real story that’s developing further with this list–and we expect, given changes at IBM in particular–is on the chip front. A great deal more will be revealed about the nature of such shifts in November and next June…and definitely by the end of 2015 if the many developments at IBM, Intel, NVIDIA and elsewhere are on schedule.

To put those in more accurate light, Intel has an 85% share of the systems on the list with IBM Power at 8 percent and AMD Opterons moving down three percent in terms of share to 6%. TOP500 reports that among these systems, 96% are sporting six or more cores with 83% harnessing eight or more.  To say that Intel continues to dominate is an understatement. But despite any perceived stagnation of this chart from the last couple of years, get ready, because the new few years are set to bring strong winds of change due to momentum with OpenPower and perhaps even AMD. The arrival of 64-bit ARM will shake things up as will new choices in chips, but expect a flat list at least through this time next year unless something completely unexpected happens. Fill in the blank on what that might be, but free, easy to program quantum computing systems seems the only option.

top500-chip

Right now, IBM’s Blue Gene/Q holds the majority of systems in the top ten. However, with changes at IBM, which is now focusing its efforts on the future of OpenPower and Power more generally, once these systems are decommissioned, along with the many others on the list (176 currently), it’s hard to say what their position will be. We talked with IBM’s Dave Turek this week in advance of ISC and we have an interview coming during our special coverage that will offer a sense of what’s next for Big Blue in HPC, so keep an eye out for that.

On the network front, there haven’t been any major changes. 222 systems are sporting Infiniband on this most recent list, up from 207 in fall. 75 entries are reporting 10 GbE, which is two less than the last list A total of 127 systems are outfitted with standard GbE (compared to 135 in November). There are 52 custom interconnects and 5 proprietary interconnects (which now includes the Cray Aries assets, which used to be counted under their own system name). The Gemini interconnect can be found on 18 systems, including, of course, Titan.

For some additional background on this summer’s list, we thought it might be useful to show two figures that demonstrate where a few trends in the list and its participants. The first will also not offer much in the way of difference or surprises compared to November’s iteration of the Top 500, although it’s thrilling to see growing industry participation take a slight rise.

top500-typeThe figure below puts all of this in context by showing the dominant trend in terms of systems–again, not a surprise, but a useful visualization.

top500-architectures

Of all of these systems, HP has a 36% share (down from 39% in November), IBM has 35% (up from 33% on the fall list) and Cray sits in third position for vendor share with 51 systems—a total of just a tick over 10% of the 500 machines.

What’s more enlightening on those figures is the performance share. As noted above, the Tianhe-2 system itself provides over 13% of the performance share for the list. But by vendor, IBM has a 32% performance share, Cray edged up to 18.6% (up by two percentage points, in part due to the new #10 government XC30), and although they sell more systems than the others, HP’s performance share is just a tick below Cray’s at 15.6%.

Stay tuned for our visual feature set go live later this morning CET that showcases other subtle trends on this summer’s TOP500 list.

And in the meantime, stop by the HPCwire booth to say hello. You’re welcome to bring a pot of coffee with you. I take it with milk, no sugar. And I will drink it all. Thank you.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This