GPUs Add Up For ARM Chips In HPC

By Timothy Prickett Morgan

June 23, 2014

The first wave of credible 64-bit ARM processors are coming to market late this year or early next, and as is usually the case, the high-performance computing community is getting first crack at figuring out how these chips might be deployed to run various kinds of simulations more efficiently or cost effectively.

Applied Micro, which has first mover status in the 64-bit ARM server chip race with its X-Gene 1, is teaming up with Nvidia, maker of the Tesla GPU accelerators, at the International Super Computing conference in Leipzig, Germany to promote X-Gene and Tesla as the first of several dynamic duos. Three vendors – Cirrascale, E4 Computer Engineering, and Eurotech – are also previewing hybrid ARM-Tesla systems at the conference, and others will no doubt follow soon as more ARM chips come to market towards the end of this year and into early next year.

Given the ubiquity of Xeon processors in the supercomputing space, Nvidia has to integrate well with rival Intel’s Xeon processors and has to compete against the Xeon Phi parallel X86 coprocessors, too. But Nvidia, like many system buyers, wants a second or third option when it comes to processors, and that is why Nvidia was a founding member of the OpenPower Foundation, which seeks to establish multiple sources of IBM’s Power8 and follow-on processors and to link accelerators tightly to them. Nvidia is also waving the ARM banner high as well, and wants to be the accelerator of choice for ARMv8 platforms.

“GPUs make 64-bit ARM competitive in HPC on day one,” explains Ian Buck, general manager of GPU computing software at Nvidia. “We are clearly seeing viable and compelling ARM64 platforms coming online. It is obvious that there is excitement around ARM, and there are two reasons for that. One is that we haven’t had new, innovative CPUs for a while. Some of the ARM architectures are going up to 24 cores, and they are playing with what is on die, what is off, and Broadcom and Cavium come from the networking world and there are lots of networking angles they can play. The second reason for the excitement is choice. ARM represents choice, and a very diverse one.

nvidia-arm-hpc

While network devices like to have plenty of threads, the chips used in such gear are not generally equipped with lots of floating point math processing capability, says Buck. Nvidia, you can quickly guess, wants its Tesla to be the coprocessor of choice for 64-bit ARM platforms. Having created the CUDA programming environment, which supports 64-bit ARM chips starting with the 6.5 release, and a library of hundreds of third party simulation and analytics workloads to hybrid processor-GPU, Nvidia thinks it is well placed to help customers port their applications to ARM-Tesla hybrids.

“Based on our experience with ARM to date, the porting seems to go fairly quickly if you have well-structured code,” says Buck. “A lot of HPC codes have been around long enough that they don’t have a lot of intrinsics in there, the X86isms, and code seems to move fairly easily. If the code is already GPU-accelerated, then the performance just carries straight over. These ARM64 chips can drive full GPU performance.”

Applied Micro is going to have plenty of competition in the ARMv8 processor space, with AMD, Cavium, and Broadcom all putting forth very strong contenders to go up against the hegemony of Intel’s Xeon processors and its very credible defensive position with Atom chips for modest compute and low-power needs. Intel has a substantial lead in chip manufacturing processes – something between one and two nodes, depending on how you want to count it – and is behaving as if it has a bunch of AMDs on its heels. Never before in its history has Intel been so willing to tweak its processor designs to make them better fit the workloads of supercomputing and hyperscale customers alike, from adding special instructions to Xeons to baking special versions of the Xeons that run hotter or clock higher to actually welding an FPGA into a Xeon chip, as Intel last week announced it was going to do.

This newfound openness is one way Intel is going to counter the onslaught of different 64-bit ARM processors and the various ways their makers will accelerate workloads using GPUs, DSPs, FPGAs, and other specialized circuits. In effect, Intel is adopting the malleable approach of the ARM community to defend against ARM processors.

The initial X-Gene 1 processor from Applied Micro has been sampling since early 2013, and production wafers for the chip were started at the end of March and production chips are due around now. The X-Gene 1 chip is implemented in a 40 nanometer process at Taiwan Semiconductor Manufacturing Corp; it has eight custom ARMv8 cores, designed by Applied Micro itself, on each system-on-chip. The cores on the X-Gene 1 run at 2.4 GHz, and Sanchayan Sinha, senior product manager, tells HPCwire that in terms of single-threaded performance, the X-Gene 1 has about the same level of oomph as a four-core “Haswell” Xeon E3 and about the same memory bandwidth as a “Sandy Bridge” Xeon E5.

Sinha stressed that these were very rough comparisons and that real benchmarks would eventually result in harder figures than these approximations. That is, in fact, what the development systems being shown off at ISC’14 are all about. The company is working with server partners to run the High Performance Conjugate Gradients (HPCG) benchmark, which is being proposed as a follow-on to the more widely used Linpack parallel Fortran matrix math test, on X-Gene 1 systems. Sinha says that Applied Micro and Nvidia will be able to show that an X-Gene 1 plus a Tesla K20 coprocessor will be equivalent to an X86 processor plus the same Tesla K20 floating point motor.

x-gene-1-block

The X-Gene 2 chip is a rev on the initial design and also includes eight ARM cores, but it is implemented in a 28 nanometer process at TSMC. This shrink of the process will allow Applied Micro to crank up the clock speed and add more features to its SoC. One interesting feature that the company has divulged it will add to the X-Gene 2 is support for Remote Direct Memory Access (RDMA) on the network ports on the chip. Specifically, the Ethernet ports on the chip will be able to run RDMA over Converged Ethernet (RoCE), which brings the low-latency access of InfiniBand to the Ethernet protocol. This will make the X-Gene 2 chip not only suitable for HPC workloads that are latency sensitive, but also for database, storage, and transaction processing workloads in enterprise datacenters that also like low latency.

Further out beyond this, Applied Micro has teamed up with TSMC to use its 16 nanometer FinFET 3D transistor process to create X-Gene 3. Little is known about this processor except that it will have at least 16 cores on the SoC.

This early revs of the X-Gene 1 were put on development boards called “Mustang” internally by Applied Micro and known as the X-Gene XC-1 outside of the company. The ARM-based HPC systems that are being previewed by Cirrascale and E4 Computer Engineering are based on production-grade X-Gene 1 chips and the Mustang boards.

The Cirrascale development machine puts two Mustang boards and two Tesla K20 or K20X GPU accelerators in a compact 1U server chassis:

cirrascale-x-gene

This machine is called the RM1905D in the Cirrascale product catalog, and like other Mustang board it supports a maximum of 64 GB of memory for each X-Gene 1 chip across the processor’s two memory slots. The system has four Ethernet ports: three for data and one for system management. Two of the ports for data exchange run at 1 Gb/sec and the remaining one runs at 10 Gb/sec; the management port runs at 1 Gb/sec. The Mustang board has one PCI-Express 3.0 x8 slot, which is used to link the processor to the Tesla GPU, and the chassis has room to plug in a single SATA-2 drive (a 6 Gb/sec link). Each node in the chassis has a 400 watt power supply.

The feeds and speeds of E4 Computer Engineering’s EK003 were not available at press time, but Nvidia tells HPCwire that the machine will include two X-Gene 1 system boards in a 3U enclosure that has two Tesla K20 GPU coprocessors, and that the development machine will be aimed at seismic, signal and image processing, video analytics, track analysis, Web applications, and MapReduce workloads.

Cirrascale and E4 Computer Engineering plan to ship their development machines in July, according to Nvidia.

Eurotech has a custom motherboard design using the X-Gene 1 chip that has main memory soldered onto the board to give it a very low profile and therefore high density for its ARM-based Aurora system. The compute elements in this new Aurora machine are based on what the company calls its “brick technology,” and will employ direct hot-water cooling of the components in the brick. It will include a combination of ARM processors and Tesla coprocessors. Further details for this Eurotech Aurora system were not yet available at press time, but we will hunt them down. The company expects to ship production machines later this year.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This