UiT Recycles Supercomputing Power with Asetek’s RackCDU™

June 23, 2014

The University of Tromso (UiT) the “Artic University of Norway” is the world’s northernmost university with four campuses spread out across Norway. UiT is already a leader in High Performance Computing (HPC). In 2007 its STALLO cluster became the most powerful cluster in Norway and reached 63rd position in the Top500. In 2014 STALLO 2 is expected to reach 310 Teraflop in peak performance.UiT

UiT’s innovative thinking includes using supercomputing clusters as a heating plant. Specifically, the waste heat from the High Performance Computing facility is the energy source for building and district heating, reducing overall campus energy demand.

“Recently we have moved our attention from counting how many flops we can get out of the supercomputer to how many watts that can be recycled from the same computer” says Svenn Hanssen, Head of Section Research and Educational IT, University of Tromso

UiT believes that hot water cooling is something that gives the Arctic region an advantage and positions the region as a natural place to establish future datacenters. With an average temperature of 4ºC, UiT is an ideal location for re-use of waste heat from data centers. By cutting millions of krones from the power bill, more money can be spent on computing, software and the actual research. Waste heat recovery is also key in UiT’s goal to become the world’s leader in Green HPC.

During the summer of 2014 UiT will complete the build of a new 2MW data center. Its supercomputing cluster is expected to be around 2/3rds cooled by hot water with the longer term goal to make the entire cluster water cooled. The system will use the exit water from cooling the supercomputer as a heat source for the nearby buildings that will expand in the next phase to also provide heat to the hospital next door. The hot water will be used to heat the structures via both wall and ceiling radiators.

UiT began installing Asetek’s RackCDU D2C™ hot water data center liquid cooling in January 2014with the goal of using the supercomputing cluster as a district heat plant. The RackCDU D2C system consists of two key sub systems: D2C™ server coolers that are drop in replacements for the CPU air heat sinks in each server and a RackCDU extension that mounts of the back of each rack. Asetek D2C server coolers bring low-pressure, hot water inside the computing nodes to directly cool high heat flux components such as CPUs, GPUs and memory.

The RackCDU Extension is a 263mm (10.5 inch) cabinet that contains a zero-U rack level Cooling Distribution Unit (hence RackCDU) that exchanges heat between the cooling liquid running through the servers and the liquid in the larger facilities liquid cooling / waste heat recovery loop. Hot cooling liquid moves Rack CDUbetween RackCDU and server coolers via tubes that attach with dripless quick connectors to the RackCDU and via blind mate connectors to the server coolers. The server cooler, connecting tubes and RackCDU are all delivered pre-filled with coolant. Data center operators never have to deal with server cooling liquid.

RackCDU enables much higher rack densities, reduces the overhead power requirements for data center cooling, lowers acoustic noise and enables the use of waste heat to be recouped for building and district heating.

Hot water cooling is highly effective since the surface temperature of a CPU (case temp) only needs to be maintained between 67°C to 85°C (153°F to 185°F), depending on CPU model. The operating surface temperatures for memory chips, GPUs and co-processors is even higher, in the 90°to 95°C (194°F to 203°F) range. The cooling efficiency of water allows it to maintain the required case temps with a low initial temperature difference between the water and the component being cooled, or a small delta T. This means the water used for cooling the components can be hot.  RackCDU D2C is deployable as part of completely new clusters, in server refresh cycles or even as retrofits of existing servers. In particular, there is the ability to implement D2C in many standard air cooled servers offered by OEMs today just as UiT is doing with its HP SL230 servers.

UiT chose to concentrate on D2C cooling of CPUs in the HP SL230 servers used in their HPC cluster. Air-cooled HP SL230’s are a popular choice in the HPC world and RackCDU D2C allows the leveraging these cost-effective nodes to run more efficiently through liquid cooling while enabling high density deployments and substantial power savings.

To make best use of the waste heat a number of factors must be optimized. UiT is manipulating a range of parameters for optimization: flow rates, amount of hot water needed, the temperature of the water, the delta between the supply and return temperature and the size of the supercomputer in terms of possible production of hot water.

Initial testing has shown it is possible to achieve that greater than 70% waste heat recycling with a delta of 25oC between input and exit temperature of the cooling water. The testingUiTto date has been with a rather cold 12oC supply temperature and performance is expected to be even better at higher input temps. Air temperature in the computer room is also a factor. UiT has found that as they increase the room temperature, the water cooled system performance is not affected. Conversely, the air cooled systems start to spend more power for cooling as room temperature rises.

Because it is an HPC computing cluster, a 100% server load is common. The UiT load is typically greater than 80% 24 hours per day/7 days a week, making it ideal for heat capture and reuse.

One of the side effects of moving to hot water cooling and implementing district heating at UiT is the shift in how the supercomputing resource is viewed. No longer is the supercomputer seen as a multi-million dollar yearly expenditure in terms of variable power costs. It is now actually something the whole university expects to be expanded and integrated into the infrastructure to provide heating as well as power cost savings. Indeed, the visibility has built such enthusiasm that there are even artists trying to hook the supercomputer up to new art installations on campus to give different perspectives to the artwork based on the real-time load of the system.

UiT’s leadership in supercomputing is being matched by its mission to become the world’s leader in green High Performance Computing. Not only greening the data center itself but in recouping energy for district heating and having the supercomputing cluster be viewed as a community asset.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate scientists the ability to use machine learning to identify e Read more…

By Rob Farber

Mellanox Reacts to Activist Investor Pressures in Letter to Shareholders

March 16, 2018

Activist investor Starboard Value has been exerting pressure on Mellanox Technologies to increase its returns. In response, the high-performance networking company on Monday, March 12, published a letter to shareholders outlining its proposal for a May 2018 extraordinary general meeting (EGM) of shareholders and highlighting its long-term growth strategy and focus on operating margin improvement. Read more…

By Staff

Quantum Computing vs. Our ‘Caveman Newtonian Brain’: Why Quantum Is So Hard

March 15, 2018

Quantum is coming. Maybe not today, maybe not tomorrow, but soon enough. Within 10 to 12 years, we’re told, special-purpose quantum systems will enter the commercial realm. Assuming this happens, we can also assume that quantum will, over extended time, become increasingly general purpose as it delivers mind-blowing power. Read more…

By Doug Black

HPE Extreme Performance Solutions

Achieve Optimal Performance at Scale with High Performance Fabrics for HPC

High Performance Computing (HPC) is unlocking a new era of speed and productivity to fuel business transformation. Rapid advancements in HPC capabilities are helping organizations operate faster and more effectively than ever, but in today’s fast-paced marketplace, a new generation of technologies is required to reach greater scalability and cost-efficiency. Read more…

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise IT in its willingness to outsource computational power. The m Read more…

By Chris Downing

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Stephen Hawking, Legendary Scientist, Dies at 76

March 14, 2018

Stephen Hawking passed away at his home in Cambridge, England, in the early morning of March 14; he was 76. Born on January 8, 1942, Hawking was an English theo Read more…

By Tiffany Trader

Hyperion Tackles Elusive Quantum Computing Landscape

March 13, 2018

Quantum computing - exciting and off-putting all at once - is a kaleidoscope of technology and market questions whose shapes and positions are far from settled. Read more…

By John Russell

Part Two: Navigating Life Sciences Choppy HPC Waters in 2018

March 8, 2018

2017 was not necessarily the best year to build a large HPC system for life sciences say Ari Berman, VP and GM of consulting services, and Aaron Gardner, direct Read more…

By John Russell

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

SciNet Launches Niagara, Canada’s Fastest Supercomputer

March 5, 2018

SciNet and the University of Toronto today unveiled "Niagara," Canada's most-powerful supercomputer, comprising 1,500 dense Lenovo ThinkSystem SD530 high-perfor Read more…

By Tiffany Trader

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

World Record: Quantum Computer with 46 Qubits Simulated

December 18, 2017

Scientists from the Jülich Supercomputing Centre have set a new world record. Together with researchers from Wuhan University and the University of Groningen, Read more…

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This