Are Supercomputing’s Elite Turning Backs on Accelerators?

By Nicole Hemsoth

June 26, 2014

Now that this year’s Top500 has been released and analyzed, we wanted to take a step back to look at a few emerging trends. One of the elements of the last couple of lists that caught our eye is that despite the availability of new accelerator/co-processor choices, there is a noticeable leveling off in overall use following a sharp increase that began in 2010 with the full arrival of GPU computing.

This data is rather out of step with what the analysts are finding in terms of accelerator adoption. For instance, both IDC’s high performance computing group and Intersect360 see strong growth for the accelerator/co-processor market now and in years ahead. IDC found that the number of sites using these technologies jumped from 28.2% in 2011 to an incredible 76.9% in 2013. They also noted that NVIDIA GPUs and the Xeon Phi were “neck in neck” in the race for HPC customers, noting the “use of co-processors and accelerators is still wider than it is, meaning that these newer devices have entered many more sites, but are often still used for exploratory purposes rather than production computing.” IDC also highlighted that industrial users were less likely to buy large number of accelerators, but were more likely to use them in production. Intersect360 Research had a more modest estimate, finding that accelerators were being used on 21% of the installed base, although they agreed with IDC that evaluation was playing a large role in the adoption at this point.

So if this massive uptick in accelerator and co-processor adoption is finding its way into analyst research with such striking figures, how is it that only a tick over 12% of the Top500 list of supercomputers is making use of them? These are the most experimental environments and while, as you can see in the charts coming soon, there was a spike in 2010-2011 signalling the full arrival of GPUs in particular, there’s been no rapid increase. Just an even line.

Of all the machines on this year’s Top500, only 62 are using accelerator/co-processor technology, which is only a slight increase from the November ranking, which showed a total of 53 systems. Of thos, 44 are using NVIDIA GPUs (see the generation in the graphic below), 17 have implemented Xeon Phi as the co-processor/acceleration option, and two machines are leveraging the ATI Radeon cards. While there are not necessarily surprises in these vendor breakdowns, we wanted to highlight the flat line that extends across these accelerated machines. On the one hand, it would seem that given the options available with the addition of Intel’s Xeon Phi into the HPC market and the ever-richer ecosystem around CUDA and OpenCL, why aren’t more supercomputing sites choosing to push their machines with accelerators?

AcceleratorGeneral

There are a few reasons for this tapering off, says Top 500 list curator, Erich Strohmaier, but make no mistake, none of them spell a dire future for GPUs or co-processors like the Xeon Phi.

The culprit for this even keel story for what’s remained one of the most exciting technology areas in HPC has nothing to do with interest, it’s a matter of procurement cycles aligning with product cycles. He said that some years ago, the list could see more dramatic swings with new technologies because procurements were secured with upgrade agreements so users could confidently grab a system instead of delaying procurement to wait for the latest and greatest part.

It is probably coming as no surprise then that we’re going to see a marked uptick in accelerator adoption in 2015 (or that’s the plan, according to what publicly stated roadmap details we have suggest) when Knight’s Landing comes into the market, bringing with it a slew of systems that are literally waiting on the right parts. As we noted during the NERSC-8 “Cori” system announcement, the users there were most interested in the on-package memory because of their workloads. It wouldn’t make sense to buy a system now and retrofit–and chances are, there will be other announcements around pending product launches for big systems (CORAL, etc.–just a guess).

But here’s the interesting thing. The Top500 list isn’t just made up of the academic/national lab supercomputers that are more capable of tying their procurements to the products they’re anticipating. What about industry HPC users who have different processes for securing their machines and, arguably, a more mission-focused (read as monetary) incentive to do what works now and buy what’s coming when it’s ready? It would be one thing to look at the analyst data on the sharp rise in accelerator/co-processor use and say that it doesn’t affect the Top500 because of the influence of commercial systems but guess what? Well over half the Top500 is made up of industrial machines.

This could mean a few things. First, we might be wrong in the assumption that industrial users are less likely to wait around and tie their procurement processes to product cycles. Perhaps everyone does now–feel free to comment on this. But even still, there’s no real increase in actual Linpack-ready implementation, so that might suggest that if they had already evaluated accelerators/coprocessors and didn’t find them of immediate value, they may have moved on from the experiment. So perhaps the “honeymoon” phase for these technologies is over, only for the passion to be reignited again with the arrival of Knight’s Landing and the upcoming technologies NVIDIA has on deck (and let’s not forget what will happen with FPGAs and OpenPower–didn’t meant to be exclusionary there).

Either way, there seem to be some conflict fact points about what’s really happening with the accelerator adoption curve. The other argument to all of this, of course, is that the Top500, even with its industry users, isn’t counting a huge number of systems that could run Linpack and rank highly if only they chose to do so. It might be that we have a range of data about adoption that is incomplete on all sides. Analyst figures vary widely between research groups, the Top500 has a leveled-off showing, and as one might imagine, if you ask the vendors how their accelerator/co-processor business is doing, it’s all sunshine and roses.

On the bright side, there are two closing figures from this ISC’s Top500 that seemed worth pointing out. While they’re not related to adoption, they do make the case for the value for these technologies on both a performance and efficiency front. The first graphic, courtesy of Erich Strohmaier, shows the performance share of accelerated systems matched with the top ten supercomputer rankings that shows quite clearly that these are the key piece for high performance. 9 out of 10 of the systems are outfitted with GPUs or Xeon Phi.

Accelerators1Accelerators2

The second graphic shows the green performance of these GPU and Xeon Phi-enabled systems.

acceleratorsEfficiency

We would love to hear from you on this point. Is it a matter of waiting until 2015 for things to pick up again following the product cycle that so many seem to be holding out for? Or is it that the peak interest and experimentation has yielded results that are expected to be stagnant? And further, how should the upcomign Knight’s Landing processor and anything integrated that NVIDIA, IBM, AMD and others do be classified if the accelerator is inside the chip–won’t that become the norm?

 

 

Here is more text.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has unveiled alternatives for affected users that give them severa Read more…

By Todd R. Weiss

China Unveils First 7nm Chip: Big Island

January 22, 2021

Shanghai Tianshu Zhaoxin Semiconductor Co. is claiming China’s first 7-nanometer chip, described as a leading-edge, general-purpose cloud computing chip based on a proprietary GPU architecture. Dubbed “Big Island Read more…

By George Leopold

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practical application, and what are some of the key opportunities a Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Supercomputers Assist Hunt for Mysterious Axion Particle

January 21, 2021

In the 1970s, scientists theorized the existence of axions: particles born in the hearts of stars that, when exposed to a magnetic field, become light particles, and which may even comprise dark matter. To date, however, Read more…

By Oliver Peckham

AWS Solution Channel

Fire Dynamics Simulation CFD workflow on AWS

Modeling fires is key for many industries, from the design of new buildings, defining evacuation procedures for trains, planes and ships, and even the spread of wildfires. Read more…

Researchers Train Fluid Dynamics Neural Networks on Supercomputers

January 21, 2021

Fluid dynamics simulations are critical for applications ranging from wind turbine design to aircraft optimization. Running these simulations through direct numerical simulations, however, is computationally costly. Many Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has un Read more…

By Todd R. Weiss

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practic Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

President-elect Biden Taps Eric Lander and Deep Team on Science Policy

January 19, 2021

Last Friday U.S. President-elect Joe Biden named The Broad Institute founding director and president Eric Lander as his science advisor and as director of the Office of Science and Technology Policy. Lander, 63, is a mathematician by training and distinguished life sciences... Read more…

By John Russell

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This