Are Supercomputing’s Elite Turning Backs on Accelerators?

By Nicole Hemsoth

June 26, 2014

Now that this year’s Top500 has been released and analyzed, we wanted to take a step back to look at a few emerging trends. One of the elements of the last couple of lists that caught our eye is that despite the availability of new accelerator/co-processor choices, there is a noticeable leveling off in overall use following a sharp increase that began in 2010 with the full arrival of GPU computing.

This data is rather out of step with what the analysts are finding in terms of accelerator adoption. For instance, both IDC’s high performance computing group and Intersect360 see strong growth for the accelerator/co-processor market now and in years ahead. IDC found that the number of sites using these technologies jumped from 28.2% in 2011 to an incredible 76.9% in 2013. They also noted that NVIDIA GPUs and the Xeon Phi were “neck in neck” in the race for HPC customers, noting the “use of co-processors and accelerators is still wider than it is, meaning that these newer devices have entered many more sites, but are often still used for exploratory purposes rather than production computing.” IDC also highlighted that industrial users were less likely to buy large number of accelerators, but were more likely to use them in production. Intersect360 Research had a more modest estimate, finding that accelerators were being used on 21% of the installed base, although they agreed with IDC that evaluation was playing a large role in the adoption at this point.

So if this massive uptick in accelerator and co-processor adoption is finding its way into analyst research with such striking figures, how is it that only a tick over 12% of the Top500 list of supercomputers is making use of them? These are the most experimental environments and while, as you can see in the charts coming soon, there was a spike in 2010-2011 signalling the full arrival of GPUs in particular, there’s been no rapid increase. Just an even line.

Of all the machines on this year’s Top500, only 62 are using accelerator/co-processor technology, which is only a slight increase from the November ranking, which showed a total of 53 systems. Of thos, 44 are using NVIDIA GPUs (see the generation in the graphic below), 17 have implemented Xeon Phi as the co-processor/acceleration option, and two machines are leveraging the ATI Radeon cards. While there are not necessarily surprises in these vendor breakdowns, we wanted to highlight the flat line that extends across these accelerated machines. On the one hand, it would seem that given the options available with the addition of Intel’s Xeon Phi into the HPC market and the ever-richer ecosystem around CUDA and OpenCL, why aren’t more supercomputing sites choosing to push their machines with accelerators?

AcceleratorGeneral

There are a few reasons for this tapering off, says Top 500 list curator, Erich Strohmaier, but make no mistake, none of them spell a dire future for GPUs or co-processors like the Xeon Phi.

The culprit for this even keel story for what’s remained one of the most exciting technology areas in HPC has nothing to do with interest, it’s a matter of procurement cycles aligning with product cycles. He said that some years ago, the list could see more dramatic swings with new technologies because procurements were secured with upgrade agreements so users could confidently grab a system instead of delaying procurement to wait for the latest and greatest part.

It is probably coming as no surprise then that we’re going to see a marked uptick in accelerator adoption in 2015 (or that’s the plan, according to what publicly stated roadmap details we have suggest) when Knight’s Landing comes into the market, bringing with it a slew of systems that are literally waiting on the right parts. As we noted during the NERSC-8 “Cori” system announcement, the users there were most interested in the on-package memory because of their workloads. It wouldn’t make sense to buy a system now and retrofit–and chances are, there will be other announcements around pending product launches for big systems (CORAL, etc.–just a guess).

But here’s the interesting thing. The Top500 list isn’t just made up of the academic/national lab supercomputers that are more capable of tying their procurements to the products they’re anticipating. What about industry HPC users who have different processes for securing their machines and, arguably, a more mission-focused (read as monetary) incentive to do what works now and buy what’s coming when it’s ready? It would be one thing to look at the analyst data on the sharp rise in accelerator/co-processor use and say that it doesn’t affect the Top500 because of the influence of commercial systems but guess what? Well over half the Top500 is made up of industrial machines.

This could mean a few things. First, we might be wrong in the assumption that industrial users are less likely to wait around and tie their procurement processes to product cycles. Perhaps everyone does now–feel free to comment on this. But even still, there’s no real increase in actual Linpack-ready implementation, so that might suggest that if they had already evaluated accelerators/coprocessors and didn’t find them of immediate value, they may have moved on from the experiment. So perhaps the “honeymoon” phase for these technologies is over, only for the passion to be reignited again with the arrival of Knight’s Landing and the upcoming technologies NVIDIA has on deck (and let’s not forget what will happen with FPGAs and OpenPower–didn’t meant to be exclusionary there).

Either way, there seem to be some conflict fact points about what’s really happening with the accelerator adoption curve. The other argument to all of this, of course, is that the Top500, even with its industry users, isn’t counting a huge number of systems that could run Linpack and rank highly if only they chose to do so. It might be that we have a range of data about adoption that is incomplete on all sides. Analyst figures vary widely between research groups, the Top500 has a leveled-off showing, and as one might imagine, if you ask the vendors how their accelerator/co-processor business is doing, it’s all sunshine and roses.

On the bright side, there are two closing figures from this ISC’s Top500 that seemed worth pointing out. While they’re not related to adoption, they do make the case for the value for these technologies on both a performance and efficiency front. The first graphic, courtesy of Erich Strohmaier, shows the performance share of accelerated systems matched with the top ten supercomputer rankings that shows quite clearly that these are the key piece for high performance. 9 out of 10 of the systems are outfitted with GPUs or Xeon Phi.

Accelerators1Accelerators2

The second graphic shows the green performance of these GPU and Xeon Phi-enabled systems.

acceleratorsEfficiency

We would love to hear from you on this point. Is it a matter of waiting until 2015 for things to pick up again following the product cycle that so many seem to be holding out for? Or is it that the peak interest and experimentation has yielded results that are expected to be stagnant? And further, how should the upcomign Knight’s Landing processor and anything integrated that NVIDIA, IBM, AMD and others do be classified if the accelerator is inside the chip–won’t that become the norm?

 

 

Here is more text.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This