First Details Emerge from Cray on Trinity Supercomputer

By Nicole Hemsoth

July 10, 2014

Note – 7:32 p.m. Eastern: We have full details from Los Alamos about the system in a detailed update article.

Cray has been granted one of the largest awards in its history for the long-awaited “Trinity” supercomputer. This morning the company announced a $174 million deal to provide the National Nuclear Security Administration (NNSA) with a multi-petaflop next generation Cray XC machine, complemented by an 82 petabyte capacity Cray Sonexion storage system. The goal of the new super is set to contend with the agency’s nuclear stockpiles, simulating everything from continued maintenance, degradation, and even destruction of the vast reserves, as well as hosting a wealth of classified national security applications.

The original proposal for the system suggest a need for a machine capable of up to 30 petaflops, and it looks like this might not be unrealistic given what we know about the architectural choices and the amount Cray inked into their revenue for the year today—causing a decent uptick in their stock price and tipping them into billion-dollar valuation territory.

The system will be powered by what sounds like a relatively balanced combination of future-generation Haswells (we’re guessing between 14-18 cores) and future Knights Landing processors (60+ cores), which represents a strategy that’s driven by a clear sense of NNSA application and simulation goals. We’ll do some speculative math in the coming week or so about what this system might actually look like since nothing has been released FLOPS or otherwise, but given so many unknowns in terms of final core counts of the Haswell and Knights Landing as well as pricing, we want to take our time on those guesses. But the early look we got with the formal announcement and our conversation with Cray denotes this is going to be core-heavy, FLOPS-centric powerhouse, even if it doesn’t meet the high-end 30 petaflop target.

Following a conversation this morning with Cray’s Barry Bolding, we learned there are two major phases in the deployment leading up to the acceptance testing late next year or into the following year, which is likely determined by Intel’s delivery of the new Xeons and Knights Landing chips versus any delays on Cray’s part. What’s interesting is that it sounds like it’s a balanced system between the two core types.

Bolding says that the processor updates are a defining factor in the next generation of their XC rather than an entirely new system set driven by custom engineering of the entire system’s interconnect, cooling, or other components. He does note that in the new generation of XC machines there has been extensive work done to support the large number of new Intel cores within the software stack, and ostensibly in their Sonexion storage to support the tiered storage demands for using burst buffers in novel ways. The idea, he says, is to make machines that are ready to roll into large deployments like this and the NERSC system instead of custom engineering systems based on particular user requirements.

“It’s hard to build these reproducible products at this scale that multiple sites agree they can all use. Our philosophy is to create these massive production systems and it’s good that we don’t have to custom design each one. There’s going to be an evolution of the software stack and new features we’re not talking about today, but there will be innovations—and that’s another reason it’s a multi-phased approach.”

“Each phase is significant in size—the first will predominantly be the next-generation Haswell processors, followed by the Knight’s Landing piece in a later phase.” They’re both major parts of the installation, one isn’t much larger than the other.

Other systems that are set to come online in the next year and a half may be reliant on more novel, diverse architectures, but with a very specific, known set of users and projects, it’s clear that the NNSA had a direct sense of how the additional cores (and presumably on-package memory of Knight’s Landing) would translate directly into meaningful results.

The system choice was driven by the need to secure a mixed workload system, hence the processor choice of both Knight’s Landing and Haswell cores (compared to the NERSC “Cori” supercomputer that Cray is building which is predominantly next-generation Knight’s Landing based). “The binary compatibility in their Xeon line is a Knight’s innovation when you want to do heterogeneous types of problems across different types of processors. It’s not super-unique, but it’s interesting that they want to do this at such large scale,” said Bolding.

NERSC’s system and Trinity are both XC systems, but these are different workloads with different mandates. NERSC has a broad user base as an open science DoE system serving thousands of applications and hundreds of users. The Trinity system will be used for more targeted weapons stockpile-related workloads.” He says it shows that the XC systems can be diverse enough to support both distinct user types and beyond.

Aside from the sheer core thrust from the Intel processors, one of the more interesting elements of the upcoming machine is the storage. Bolding says they wanted a very large, powerful Lustre environment and Sonexion met those requirements. We’ll be bringing more details on the burst buffer and general storage component later today following a conversation with one of the leads on that front at Los Alamos but for now, we have some initial details from Cray.

“Tiered storage (and burst buffers are a particular tier) will be more important for customers like this in the future but there is real interest in more than just Lustre at other tiers. We are working to develop this in multiple tiers to support these needs,” said Bolding.

This is among the largest deals in Cray’s history. The company had a multi-year DARPA contract valued initially at $250 million in 2006, although the final contract was closer to the amount of the Trinity system. The Blue Waters procurement, as tangled as it might have been in 2011, was around $200 million, and at Oak Ridge, other similar deals in terms of dollar value were secured. Still, this represents one of the top contracts for Cray—and we’re just getting into swing with procurement news, which will pick up now that there is clarity around when the latest Intel processors will roll out—something that undoubtedly is driving procurement timelines across the board.

The new supercomputer will be housed at Los Alamos National Laboratory and is part of a joint effort between the New Mexico Alliance for Computing at Extreme Scale (ACES), based at LANL, and Sandia National Laboratories’ NNSA Advanced Simulation and Computing Program (ASC).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Pioneering Programmers Awarded Presidential Medal of Freedom

November 30, 2016

In an awards ceremony on November 22, President Barack Obama recognized 21 recipients with the Presidential Medal of Freedom, the Nation’s highest civilian honor. Read more…

By Tiffany Trader

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This