First Details Emerge from Cray on Trinity Supercomputer

By Nicole Hemsoth

July 10, 2014

Note – 7:32 p.m. Eastern: We have full details from Los Alamos about the system in a detailed update article.

Cray has been granted one of the largest awards in its history for the long-awaited “Trinity” supercomputer. This morning the company announced a $174 million deal to provide the National Nuclear Security Administration (NNSA) with a multi-petaflop next generation Cray XC machine, complemented by an 82 petabyte capacity Cray Sonexion storage system. The goal of the new super is set to contend with the agency’s nuclear stockpiles, simulating everything from continued maintenance, degradation, and even destruction of the vast reserves, as well as hosting a wealth of classified national security applications.

The original proposal for the system suggest a need for a machine capable of up to 30 petaflops, and it looks like this might not be unrealistic given what we know about the architectural choices and the amount Cray inked into their revenue for the year today—causing a decent uptick in their stock price and tipping them into billion-dollar valuation territory.

The system will be powered by what sounds like a relatively balanced combination of future-generation Haswells (we’re guessing between 14-18 cores) and future Knights Landing processors (60+ cores), which represents a strategy that’s driven by a clear sense of NNSA application and simulation goals. We’ll do some speculative math in the coming week or so about what this system might actually look like since nothing has been released FLOPS or otherwise, but given so many unknowns in terms of final core counts of the Haswell and Knights Landing as well as pricing, we want to take our time on those guesses. But the early look we got with the formal announcement and our conversation with Cray denotes this is going to be core-heavy, FLOPS-centric powerhouse, even if it doesn’t meet the high-end 30 petaflop target.

Following a conversation this morning with Cray’s Barry Bolding, we learned there are two major phases in the deployment leading up to the acceptance testing late next year or into the following year, which is likely determined by Intel’s delivery of the new Xeons and Knights Landing chips versus any delays on Cray’s part. What’s interesting is that it sounds like it’s a balanced system between the two core types.

Bolding says that the processor updates are a defining factor in the next generation of their XC rather than an entirely new system set driven by custom engineering of the entire system’s interconnect, cooling, or other components. He does note that in the new generation of XC machines there has been extensive work done to support the large number of new Intel cores within the software stack, and ostensibly in their Sonexion storage to support the tiered storage demands for using burst buffers in novel ways. The idea, he says, is to make machines that are ready to roll into large deployments like this and the NERSC system instead of custom engineering systems based on particular user requirements.

“It’s hard to build these reproducible products at this scale that multiple sites agree they can all use. Our philosophy is to create these massive production systems and it’s good that we don’t have to custom design each one. There’s going to be an evolution of the software stack and new features we’re not talking about today, but there will be innovations—and that’s another reason it’s a multi-phased approach.”

“Each phase is significant in size—the first will predominantly be the next-generation Haswell processors, followed by the Knight’s Landing piece in a later phase.” They’re both major parts of the installation, one isn’t much larger than the other.

Other systems that are set to come online in the next year and a half may be reliant on more novel, diverse architectures, but with a very specific, known set of users and projects, it’s clear that the NNSA had a direct sense of how the additional cores (and presumably on-package memory of Knight’s Landing) would translate directly into meaningful results.

The system choice was driven by the need to secure a mixed workload system, hence the processor choice of both Knight’s Landing and Haswell cores (compared to the NERSC “Cori” supercomputer that Cray is building which is predominantly next-generation Knight’s Landing based). “The binary compatibility in their Xeon line is a Knight’s innovation when you want to do heterogeneous types of problems across different types of processors. It’s not super-unique, but it’s interesting that they want to do this at such large scale,” said Bolding.

NERSC’s system and Trinity are both XC systems, but these are different workloads with different mandates. NERSC has a broad user base as an open science DoE system serving thousands of applications and hundreds of users. The Trinity system will be used for more targeted weapons stockpile-related workloads.” He says it shows that the XC systems can be diverse enough to support both distinct user types and beyond.

Aside from the sheer core thrust from the Intel processors, one of the more interesting elements of the upcoming machine is the storage. Bolding says they wanted a very large, powerful Lustre environment and Sonexion met those requirements. We’ll be bringing more details on the burst buffer and general storage component later today following a conversation with one of the leads on that front at Los Alamos but for now, we have some initial details from Cray.

“Tiered storage (and burst buffers are a particular tier) will be more important for customers like this in the future but there is real interest in more than just Lustre at other tiers. We are working to develop this in multiple tiers to support these needs,” said Bolding.

This is among the largest deals in Cray’s history. The company had a multi-year DARPA contract valued initially at $250 million in 2006, although the final contract was closer to the amount of the Trinity system. The Blue Waters procurement, as tangled as it might have been in 2011, was around $200 million, and at Oak Ridge, other similar deals in terms of dollar value were secured. Still, this represents one of the top contracts for Cray—and we’re just getting into swing with procurement news, which will pick up now that there is clarity around when the latest Intel processors will roll out—something that undoubtedly is driving procurement timelines across the board.

The new supercomputer will be housed at Los Alamos National Laboratory and is part of a joint effort between the New Mexico Alliance for Computing at Extreme Scale (ACES), based at LANL, and Sandia National Laboratories’ NNSA Advanced Simulation and Computing Program (ASC).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

Microsoft Closes Confidential Computing Loop with AMD’s Milan Chip

September 22, 2022

Microsoft shared details on how it uses an AMD technology to secure artificial intelligence as it builds out a secure AI infrastructure in its Azure cloud service. Microsoft has a strong relationship with Nvidia, but is also working with AMD's Epyc chips (including the new 3D VCache series), MI Instinct accelerators, and also... Read more…

Nvidia Introduces New Ada Lovelace GPU Architecture, OVX Systems, Omniverse Cloud

September 20, 2022

In his GTC keynote today, Nvidia CEO Jensen Huang launched another new Nvidia GPU architecture: Ada Lovelace, named for the legendary mathematician regarded as the first computer programmer. The company also announced tw Read more…

Nvidia’s Hopper GPUs Enter ‘Full Production,’ DGXs Delayed Until Q1

September 20, 2022

Just about six months ago, Nvidia’s spring GTC event saw the announcement of its hotly anticipated Hopper GPU architecture. Now, the GPU giant is announcing that Hopper-generation GPUs (which promise greater energy eff Read more…

NeMo LLM Service: Nvidia’s First Cloud Service Makes AI Less Vague

September 20, 2022

Nvidia is trying to uncomplicate AI with a cloud service that makes AI and its many forms of computing less vague and more conversational. The NeMo LLM service, which Nvidia called its first cloud service, adds a layer of intelligence and interactivity... Read more…

AWS Solution Channel

Shutterstock 1194728515

Simulating 44-Qubit quantum circuits using AWS ParallelCluster

Dr. Fabio Baruffa, Sr. HPC & QC Solutions Architect
Dr. Pavel Lougovski, Pr. QC Research Scientist
Tyson Jones, Doctoral researcher, University of Oxford

Introduction

Currently, an enormous effort is underway to develop quantum computing hardware capable of scaling to hundreds, thousands, and even millions of physical (non-error-corrected) qubits. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1166887495

Improving Insurance Fraud Detection using AI Running on Cloud-based GPU-Accelerated Systems

Insurance is a highly regulated industry that is evolving as the industry faces changing customer expectations, massive amounts of data, and increased regulations. A major issue facing the industry is tracking insurance fraud. Read more…

Nvidia Targets Computers for Robots in the Surgery Rooms

September 20, 2022

Nvidia is laying the groundwork for a future in which humans and robots will be collaborators in the surgery rooms at hospitals. The company announced a computer called IGX for Medical Devices, which will be populated in robots, image scanners and other computers and medical devices involved in patient care close to the point... Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

Nvidia Introduces New Ada Lovelace GPU Architecture, OVX Systems, Omniverse Cloud

September 20, 2022

In his GTC keynote today, Nvidia CEO Jensen Huang launched another new Nvidia GPU architecture: Ada Lovelace, named for the legendary mathematician regarded as Read more…

Nvidia’s Hopper GPUs Enter ‘Full Production,’ DGXs Delayed Until Q1

September 20, 2022

Just about six months ago, Nvidia’s spring GTC event saw the announcement of its hotly anticipated Hopper GPU architecture. Now, the GPU giant is announcing t Read more…

NeMo LLM Service: Nvidia’s First Cloud Service Makes AI Less Vague

September 20, 2022

Nvidia is trying to uncomplicate AI with a cloud service that makes AI and its many forms of computing less vague and more conversational. The NeMo LLM service, which Nvidia called its first cloud service, adds a layer of intelligence and interactivity... Read more…

Nvidia Targets Computers for Robots in the Surgery Rooms

September 20, 2022

Nvidia is laying the groundwork for a future in which humans and robots will be collaborators in the surgery rooms at hospitals. The company announced a computer called IGX for Medical Devices, which will be populated in robots, image scanners and other computers and medical devices involved in patient care close to the point... Read more…

Survey Results: PsiQuantum, ORNL, and D-Wave Tackle Benchmarking, Networking, and More

September 19, 2022

The are many issues in quantum computing today – among the more pressing are benchmarking, networking and development of hybrid classical-quantum approaches. Read more…

HPC + AI Wall Street to Feature ‘Spooky’ Science for Financial Services

September 18, 2022

Albert Einstein famously described quantum mechanics as "spooky action at a distance" due to the non-intuitive nature of superposition and quantum entangled par Read more…

Analog Chips Find a New Lease of Life in Artificial Intelligence

September 17, 2022

The need for speed is a hot topic among participants at this week’s AI Hardware Summit – larger AI language models, faster chips and more bandwidth for AI machines to make accurate predictions. But some hardware startups are taking a throwback approach for AI computing to counter the more-is-better... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

US Senate Passes CHIPS Act Temperature Check, but Challenges Linger

July 19, 2022

The U.S. Senate on Tuesday passed a major hurdle that will open up close to $52 billion in grants for the semiconductor industry to boost manufacturing, supply chain and research and development. U.S. senators voted 64-34 in favor of advancing the CHIPS Act, which sets the stage for the final consideration... Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

Leading Solution Providers

Contributors

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

Exclusive Inside Look at First US Exascale Supercomputer

July 1, 2022

HPCwire takes you inside the Frontier datacenter at DOE's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., for an interview with Frontier Project Direc Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire