Los Alamos Lead Shares ‘Trinity’ Feeds and Speeds

By Nicole Hemsoth

July 10, 2014

We’ve been anticipating news around the Trinity supercomputer for some time now and today were graced with the news that Cray will be supplying the machine in two phases with the final phase being complete in 2016. For the original background, the first run of the story can be found here.

Since that time this morning, we were able to have an in-depth discussion with one of the key thinkers at the heart of the procurement, Los Alamos National Labs’ HPC division leader, Gary Grider. His foundational work on burst buffers (a term he coined) features prominently in the other half of the procurement, the NERSC “Cori” system, but he’s also been instrumental in making system-level choices for the NNSA’s mission-critical Trinity supercomputer, along with a great deal of assistance from project partners at Sandia.

Grider told us the team at Los Alamos is already busy installing the extra power and cooling needed to ready space inside the existing Strategic Computing Complex at the lab with the 45,000 square feet of space for the new system. The approximately 270 next-generation Cray XC racks won’t occupy that entire space, says Grider, but the 10,000 square feet it needs will be prepared with the warm water cooling infrastructure needed to keep the Haswell and Knights Landing-based nodes cool, while feeding recycled water that isn’t in the racks out into protected wetlands—thus offsetting some of the concerns about the 8-10 MW that the new super will likely consume. In the bigger picture, however, Los Alamos is thinking ahead—the facility itself is preparing to handle far more in terms of power and cooling with the capability of 30 MW in sight.

We weren’t able to tell this morning how large the machine might be, but started piecing things together with some information that’s available. We know that the next-generation Haswell core count will fall somewhere in the 14-18 range (perhaps up to 24—we’ll find this out in upcoming Intel announcements, probably this quarter) and with the additional Knights Landing chips, which will sport on-package memory and anywhere between 60-72 cores, according to the data we have available. In the end, Grider confirmed that the system will (like way far) exceed the original performance targets of 30 petaflops, but he’s not sure how far over the mark it will go for the machine. There’s some speculative math coming your way soon on this…but even if half the machine is just the Xeon…whew.

As we noted earlier today, we’ll do the math once the most recent Haswell core counts and expected performance/thermals come out soon—and add it to whatever Intel cares to share later this year about the future performance of its self-hosted Knights Landing part.

For those who keep supercomputing score (and Grider isn’t one of them—he doesn’t care about the FLOPS, he cares about getting 6x-8x the performance of their workhouse “Cielo” machine) recall that this would put the 2015-2016 NNSA supercomputer just around the existing #1 system in the world for 2 years running—China’s Tianhe-2. No small feat, but Grider says that they’re not planning LINPACK unless the vendors ask them to. And if Cray thought that spike in their stock price was attractive today, having twice a year news around another top super couldn’t hurt.

The two phases of the project mean that the first cores that will hit the floor will be the Haswells because the facility cannot wait for the Knights Landing to come into play. He says that for the other side of the procurement at NERSC, they had more flexibility in waiting on the chips because they have enough capacity to keep the Office of Science machines and researchers fed. The problem at the NNSA, however, is that they need more computing power immediately. They’re going to complete an install of the first set of Haswell-based machines in the summer of 2015—but the delay is just facilities-related. They need to get their power and cooling infrastructure secured before these can go in, he said, stressing that there are no delays on Intel’s part expected for the first component.

The precise configuration of the nodes in the Trinity machine have not been divulged, but it looks like there will be compute nodes with multiple Haswell Xeon E5 v3 processors on them as well as compute nodes that have multiple Knights Landing Xeon Phi processors on them. All of these devices will be connected using the Aries XC interconnect in its dragonfly topology.

It is not clear exactly how the processors will link to the Aries interconnect, but the current Aries chip is a 48-port router that has four PCI-Express 3.0 lanes linking to four two-socket Xeon nodes. The Aries chip also has three different ranks of connectivity: Rank 1 goes into the backplane, Rank 2 is a copper network for linking six XC enclosures to each other, and Rank 3 is an optical network that links multiple rack pairs to each other. Each server node has four two-socket servers and Aries interconnect in the current design. Conceptually, you could put Xeon E5s and Xeon Phis on the same server form factor. The important thing is that the Aries interconnect allows all nodes in the system to talk to one another. The system has what Cray calls adaptive routing, making use of multiple routes in the network to get around congestion, and that implies that the system can start out with Xeon processors and have Xeon Phi chips added later with relative ease.

One little note about the architectural choice goes back to an actual lack of choice. Grider says he’s been watching OpenPower efforts carefully, but they’re mission-driven at the NNSA and need the power and bandwidth now. The OpenPower roadmap, while presenting some attractive features, was too long to consider.

Discrete GPUs were not an option for the same reasons, said Grider, noting, “we probably would have considered this as an option if there was a self-hosted GPU of some kind or higher bandwidth than a PCI bus. Again, if you look at the time we were making these decisions and the chips avail in the timeframe, you’ll see that there’s really nothing else out there right now.”

While the architectural choice is already being questioned by some as being more conservative than expected, there are a few things to keep in mind. Unlike open science centers (including NERSC) the application demands are limited in terms of scope. Grider says there are less than a dozen codes set to run on the monster, but these have been refined and blessed over the course of many years. We don’t mess around when it comes to our nuclear facilities. This means retooling codes to fit into architectural boxes is impractical and further, that they have a very defined sense of exactly what they need. The choices for architecture, while very conservative, were the only choices.

But it’s not like there’s nothing interesting happening here. For instance, Grider, the originator of the burst buffer term and early research, said that they’re going to be seeking as much performance out of their flash array as possible—using the burst buffer technology for the first time on a large-scale machine in 2015 to see how it adds to their reliability and 90% utilization goals. And from a memory perspective, it’s nothing to sneeze at either—with 2-3 petabytes of main memory, that 7 petabyte flash gear to support the burst buffer, and 82 petabytes of disk, it’s quite the powerhouse overall—and even conservative for a burst buffer until they see exactly how Cray’s Tiered Storage stuff works in action.

“The burst buffer might be in the 5-7 TB/sec and the disk system is 1-2 TB/sec. The models show that you could sustain the 90% goal with less disk bandwidth, more like 10x less than the burst buffer BW instead of the 4-5x on this machine. This was a deliberate choice because of the immaturity of the burst buffer solution space. This is the first burst buffer solution being deployed and it is a pretty large scale deployment as well, so there is reason to be a little conservative. If we had complete confidence in the burst buffer solutions at this scale, we could have saved money by buying less disk BW. Future machines can be more aggressive in this area,” said Grider.

But there are risks, even with a conservative architecture. When asked what he worries about most in terms of implementation and early use nitty-gritty, Grider said there is concern that the architecture takes a turn from the heterogeneous approach where they had a strong integer machine and a strong processor (as with Roadrunner’s AMDs) where the network was attached.

“Since Knights Landing is such a flat architecture, where it’s just a bunch of equivalent-sized processors that are smaller and weaker whereas for hot processes you want a stronger processor, we’re going to have to do some thinking,” he said. In the next month, Grider added they’ll be pulling in more long-term support from Intel and hotboxing their codes in early Knights Landing machines to navigate these worries.

Our congrats to Cray and the NNSA – this will be a great story to watch unfold….

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Pfizer HPC Engineer Aims to Automate Software Stack Testing

January 17, 2019

Seeking to reign in the tediousness of manual software testing, Pfizer HPC Engineer Shahzeb Siddiqui is developing an open source software tool called buildtest, aimed at automating software stack testing by providing the community with a central repository of tests for common HPC apps and the ability to automate execution of testing. Read more…

By Tiffany Trader

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

In just a few months time, Senegal will be operating the second largest HPC system in sub-Saharan Africa. The Minister of Higher Education, Research and Innovation Mary Teuw Niane made the announcement on Monday (Jan. 14 Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three Read more…

By Tiffany Trader

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

Intel Bets Big on 2-Track Quantum Strategy

January 15, 2019

Quantum computing has lived so long in the future it’s taken on a futuristic life of its own, with a Gartner-style hype cycle that includes triggers of innovation, inflated expectations and – though a useful quantum system is still years away – anticipatory troughs of disillusionment. Read more…

By Doug Black

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This