Los Alamos Lead Shares ‘Trinity’ Feeds and Speeds

By Nicole Hemsoth

July 10, 2014

We’ve been anticipating news around the Trinity supercomputer for some time now and today were graced with the news that Cray will be supplying the machine in two phases with the final phase being complete in 2016. For the original background, the first run of the story can be found here.

Since that time this morning, we were able to have an in-depth discussion with one of the key thinkers at the heart of the procurement, Los Alamos National Labs’ HPC division leader, Gary Grider. His foundational work on burst buffers (a term he coined) features prominently in the other half of the procurement, the NERSC “Cori” system, but he’s also been instrumental in making system-level choices for the NNSA’s mission-critical Trinity supercomputer, along with a great deal of assistance from project partners at Sandia.

Grider told us the team at Los Alamos is already busy installing the extra power and cooling needed to ready space inside the existing Strategic Computing Complex at the lab with the 45,000 square feet of space for the new system. The approximately 270 next-generation Cray XC racks won’t occupy that entire space, says Grider, but the 10,000 square feet it needs will be prepared with the warm water cooling infrastructure needed to keep the Haswell and Knights Landing-based nodes cool, while feeding recycled water that isn’t in the racks out into protected wetlands—thus offsetting some of the concerns about the 8-10 MW that the new super will likely consume. In the bigger picture, however, Los Alamos is thinking ahead—the facility itself is preparing to handle far more in terms of power and cooling with the capability of 30 MW in sight.

We weren’t able to tell this morning how large the machine might be, but started piecing things together with some information that’s available. We know that the next-generation Haswell core count will fall somewhere in the 14-18 range (perhaps up to 24—we’ll find this out in upcoming Intel announcements, probably this quarter) and with the additional Knights Landing chips, which will sport on-package memory and anywhere between 60-72 cores, according to the data we have available. In the end, Grider confirmed that the system will (like way far) exceed the original performance targets of 30 petaflops, but he’s not sure how far over the mark it will go for the machine. There’s some speculative math coming your way soon on this…but even if half the machine is just the Xeon…whew.

As we noted earlier today, we’ll do the math once the most recent Haswell core counts and expected performance/thermals come out soon—and add it to whatever Intel cares to share later this year about the future performance of its self-hosted Knights Landing part.

For those who keep supercomputing score (and Grider isn’t one of them—he doesn’t care about the FLOPS, he cares about getting 6x-8x the performance of their workhouse “Cielo” machine) recall that this would put the 2015-2016 NNSA supercomputer just around the existing #1 system in the world for 2 years running—China’s Tianhe-2. No small feat, but Grider says that they’re not planning LINPACK unless the vendors ask them to. And if Cray thought that spike in their stock price was attractive today, having twice a year news around another top super couldn’t hurt.

The two phases of the project mean that the first cores that will hit the floor will be the Haswells because the facility cannot wait for the Knights Landing to come into play. He says that for the other side of the procurement at NERSC, they had more flexibility in waiting on the chips because they have enough capacity to keep the Office of Science machines and researchers fed. The problem at the NNSA, however, is that they need more computing power immediately. They’re going to complete an install of the first set of Haswell-based machines in the summer of 2015—but the delay is just facilities-related. They need to get their power and cooling infrastructure secured before these can go in, he said, stressing that there are no delays on Intel’s part expected for the first component.

The precise configuration of the nodes in the Trinity machine have not been divulged, but it looks like there will be compute nodes with multiple Haswell Xeon E5 v3 processors on them as well as compute nodes that have multiple Knights Landing Xeon Phi processors on them. All of these devices will be connected using the Aries XC interconnect in its dragonfly topology.

It is not clear exactly how the processors will link to the Aries interconnect, but the current Aries chip is a 48-port router that has four PCI-Express 3.0 lanes linking to four two-socket Xeon nodes. The Aries chip also has three different ranks of connectivity: Rank 1 goes into the backplane, Rank 2 is a copper network for linking six XC enclosures to each other, and Rank 3 is an optical network that links multiple rack pairs to each other. Each server node has four two-socket servers and Aries interconnect in the current design. Conceptually, you could put Xeon E5s and Xeon Phis on the same server form factor. The important thing is that the Aries interconnect allows all nodes in the system to talk to one another. The system has what Cray calls adaptive routing, making use of multiple routes in the network to get around congestion, and that implies that the system can start out with Xeon processors and have Xeon Phi chips added later with relative ease.

One little note about the architectural choice goes back to an actual lack of choice. Grider says he’s been watching OpenPower efforts carefully, but they’re mission-driven at the NNSA and need the power and bandwidth now. The OpenPower roadmap, while presenting some attractive features, was too long to consider.

Discrete GPUs were not an option for the same reasons, said Grider, noting, “we probably would have considered this as an option if there was a self-hosted GPU of some kind or higher bandwidth than a PCI bus. Again, if you look at the time we were making these decisions and the chips avail in the timeframe, you’ll see that there’s really nothing else out there right now.”

While the architectural choice is already being questioned by some as being more conservative than expected, there are a few things to keep in mind. Unlike open science centers (including NERSC) the application demands are limited in terms of scope. Grider says there are less than a dozen codes set to run on the monster, but these have been refined and blessed over the course of many years. We don’t mess around when it comes to our nuclear facilities. This means retooling codes to fit into architectural boxes is impractical and further, that they have a very defined sense of exactly what they need. The choices for architecture, while very conservative, were the only choices.

But it’s not like there’s nothing interesting happening here. For instance, Grider, the originator of the burst buffer term and early research, said that they’re going to be seeking as much performance out of their flash array as possible—using the burst buffer technology for the first time on a large-scale machine in 2015 to see how it adds to their reliability and 90% utilization goals. And from a memory perspective, it’s nothing to sneeze at either—with 2-3 petabytes of main memory, that 7 petabyte flash gear to support the burst buffer, and 82 petabytes of disk, it’s quite the powerhouse overall—and even conservative for a burst buffer until they see exactly how Cray’s Tiered Storage stuff works in action.

“The burst buffer might be in the 5-7 TB/sec and the disk system is 1-2 TB/sec. The models show that you could sustain the 90% goal with less disk bandwidth, more like 10x less than the burst buffer BW instead of the 4-5x on this machine. This was a deliberate choice because of the immaturity of the burst buffer solution space. This is the first burst buffer solution being deployed and it is a pretty large scale deployment as well, so there is reason to be a little conservative. If we had complete confidence in the burst buffer solutions at this scale, we could have saved money by buying less disk BW. Future machines can be more aggressive in this area,” said Grider.

But there are risks, even with a conservative architecture. When asked what he worries about most in terms of implementation and early use nitty-gritty, Grider said there is concern that the architecture takes a turn from the heterogeneous approach where they had a strong integer machine and a strong processor (as with Roadrunner’s AMDs) where the network was attached.

“Since Knights Landing is such a flat architecture, where it’s just a bunch of equivalent-sized processors that are smaller and weaker whereas for hot processes you want a stronger processor, we’re going to have to do some thinking,” he said. In the next month, Grider added they’ll be pulling in more long-term support from Intel and hotboxing their codes in early Knights Landing machines to navigate these worries.

Our congrats to Cray and the NNSA – this will be a great story to watch unfold….

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This