Solving Simulation Complexity

By David Lourerio

July 15, 2014

Although HPC has helped solve important problems in nuclear physics, earth sciences, meteorology, etc. since the 1960s, HPC has traditionally existed only for specialists. But, with the democratization of x86 servers, large storage systems, and high-end networking technologies, companies and research facilities can now buy clusters at a reasonable ratio (power/cost) with very powerful, complex technologies or get access to remote HPC cloud platforms.

However, even though the resources are available, widespread use has been limited due to the difficulties in accessing and using the resources and/or adapting existing HPC software and hardware that still exist. Back in the nineties, researchers could spend time getting used to those hurdles, but today business ROI drives engineers and researchers to produce results in much less time. As a result, overcoming the HPC access and usability hurdles has become crucial and this has been further exacerbated by the fact that many more users of large-scale platforms are not specialists of HPC use and programming.

This article addresses the need for HPC to become a tool that’s as simple and transparent as possible so that small and medium businesses (SMBs) can easily access the resources of mid-sized clusters and use complex applications on hybrid HPC resources. To achieve this without extensive financial outlay, end users need to execute and control the simulation of applications and data directly from their desktops.

The HPC Challenge for the Smaller Business

While R&D labs and large companies may be accustomed to accessing and exploiting large computing infrastructures, small-to-medium-businesses and smaller business units within large companies that have no dedicated computing resources or HPC experts must now deal with increasing amounts and complexity of data. These smaller groups cannot afford to abandon the advantages HPC provides, but need a way to access the processing power and capabilities that mid-sized clusters offer. This need for readily available “super applications” is first referred to by Dr. Erik Deumens, Director of Research Computing at the University of Florida in his paper “What Drives Investment in the Middle of HPC?” to describe simulations that run on mid-sized computing clusters that are fully accessible on the end-user desktop.

At an international scale, some countries have tried to address this through various resources. In France, INRIA, BPI (the French public investment bank), and GENCI launched “Initiative HPC-PME” (http://www.initiative-hpc-pme.org/), an initiative aiming at providing knowledge, funds, and computing resources to enable simulation software to be powered on HPC resources for SMBs. Free Field Technologies, a French SME, participated in this program and in this testimonial, they present how improved simulation times of HPC helped them win Airbus as a customer.

In Europe, “Fortissimo” was (http://www.fortissimo-project.eu/index.html) launched in October 2013. In this initiative, SMBs needing HPC computation gain access to the resources of a research lab and a computing facility. SMEs like Pipistrel, for example, are using these HPC facilities to improve their simulations of lightweight aircraft designs.

In Silicon Valley, ÜberCloud (http://www.theubercloud.com/hpc-experiment/), launched by Burak Yenier and Wolfgang Gentzsch, was established to show how the SaaS (Software-as-a-Service) model can be used for HPC simulation. A number of large companies, software providers, and computing facilities have now implemented these technologies:

  • “High-resolution Computer Simulations of Blow-off in Combustion Systems” involving CSE, a US-based company
  • “Drifting Snow Around Arbitrary Structures” where end-users were SMEs like Binkz. Inc, a Canadian Based company
  • “Performance Analysis of GROMACS Molecular Dynamics for Simulating Enzyme Substrate” with the Indian SME called Polyclone Bioservices, and the second one has been released last week with use-cases about, or in the field of biology with a use case around.

Moving the Needle Forward

Although these advances have been implemented by some of these initiatives, there’s a need to take the solution further, to provide broad-scale access to many users. To understand what’s needed, let’s first take a look at what these users have in common.

All these different types of users need to upload their data, launch (large-scale) non-interactive simulations, and post-process them. This workflow might be business- or research-centered, but for both communities, there’s a very real need to get better results faster. This need far outweighs knowing if the computation involves using GPUs, fat nodes, or an ultra-fancy middleware designed specially for their purpose.

A preamble of all these tasks is access to the applications. The SaaS (Software-as-a-Service) model does fit with this goal. Through the browser we use every day to check our e-mail or visit websites, we can also work on complex and resource-demanding applications.

What barriers do SMBs need removed from HPC?

The ability to create structures that allow non-technical users to directly access hybrid resources is essential. Here we explore the characteristics of a web portal that would enable SMBs to easily gain access to them.

Simplified universal access—To accommodate bandwidth, the interface must be as light as possible: no browser plugins, no java applets, no flash support, or port opening required. By stripping out all of these dependencies, the interface becomes “vanilla”—able to interface with the researcher’s smart phone, desktop, or tablet regardless of its operating system.

This simplified interface creates the necessary foundation for a SaaS model to access HPC simulation software running remotely on computing clusters. Figure 1 offers an example of interface that is able to adapt to various terminals thanks to the latest HTML/CSS/JavaScript frameworks. This framework provides access to the basic info a user needs to start working: his current projects, past jobs, etc., from anywhere.


Screen Shot 2014-07-15 at 12.10.21 PM

Fig. 1 Example of interface providing access to user’s projects and his previous works

Secured access—Small businesses also need secure access. There’s been a lot of discussion about what should be used—X.509 certificates, login and passwords, SSH public and private keys. In fact, there is no standard way of achieving security. It depends heavily on the policies you want to set-up.

Inside the clusters, you could use any of these methods. But from the user’s point of view, the processes must be unified with at least a login and password that then manages every security system underneath. By doing this, the interface reduces the barrier for the end-user.

And, transfers must be, of course, encrypted to ensure no disseminations to competitors for example.

Familiar file structure—When uploading data or dealing with the HPC computing facilities, users need something that’s familiar, that doesn’t change their habits, such as classical files managers of Windows or FTP clients. This ensures that users can process vast amounts of data without having to take an excessive amount of time to prepare the files and to post process the results afterwards.

Remote Visualization—Today, computing facilities provide both computing and graphical resources. To be able to run non-interactive computations and to then do graphical post-processing on the same site is a great improvement for end-users. If the workflow interface runs fluently from computation into post-processing, then users no longer have to go onsite and disturb administrators to transfer video streams. Instead they can use remote desktop technologies from the same interface to bridge from simulation to graphical post-processing without any additional requirements.

Link with the previous capability, e.g. simplified data transfers, the traditional workflow consisting of input simulation data staging, processind and post-processing can be run in a drastically reduced timeframe.

Screen Shot 2014-07-15 at 12.09.55 PM

Fig. 2 File management interface allowing users to transfer to and from the computing resources

Simplified graphical interface—While there are many ways to access applications—home-made scripts, proprietary code, web portals—the interface needs to offer users a way to define specific parameters or modify scripts depending on the outputs they seek. This management of applications has to be as simple as possible and take the least amount of time.

The idea of using XML files to define any kind of interfaces was vogue for a while, but such interfaces were quickly recognized as just hype since they were not productive. Instead, what’s needed is a graphical tool that provides a way to design the interface that the end-users will use to interact with the scripts that execute their applications.

In designing graphical interface access, it’s easy to go overboard and provide full access to scripts and the underlying plumbing, which adds to system complexity. Well-defined and flexible right management must be provided. Only users developing scripts should be allowed to add, update, and modify applications, and only managers should be able to access usage reporting, user management, etc.

Streamlined—As shown in Figure 3, integrating an application should be no more complex than defining a script to execute, some documentation, and the input parameters the user must provide. A specific form directing the application use can then launch for the end-user. This efficiency helps the user concentrate on the most important part of their task—running the simulation with good input data.

Screen Shot 2014-07-15 at 12.10.49 PM

Fig. 3 Web interface providing an easy way to design submission forms for non-interactive applications

Billing the user—Once a framework provides access to data and the applications and links these to a global, simple-to-use workflow, the resources need to be monitored and time spent needs to be easily allocated to cost centers. Whether computing hours are divided between certain computing facilities or allocated to business units in companies, clear and precise accounting must detail who had access to the applications and resources.

Usage reporting also needs to be available in a digital format that interfaces to accounting packages for invoice creation or be integrated into existing quota systems. Figure 4 shows an interface presenting accounting and monitoring of resources and applications usage that are the basis of billing and invoicing.

Screen Shot 2014-07-15 at 12.11.05 PM

Fig. 4 Usage statistics showing the consumption of a project on different clusters

Democratized HPC

It is through these types of improvements and simplifications that SMB employees will gain access to HPC simulation. With such a simplified interface to powerful complex resources, businesses will boost productivity and be able to efficiently do their high-end computational work in much less time.

Removing HPC complexity from the game, streamlines data analysis and simulation for the SMBs, ensuring maximum productivity and increasing competitiveness.

About the Author

David Loureiro is the CEO and co-founder of SysFera, a software innovator that simplifies management and accessibility of high performance computing (HPC) environments. David holds a Master of Science in Applied Mathematics and started his career at INRIA working on distributed grid and cloud middleware in the INRIA research team called Avalon. His research interests are focused on cloud technologies, HPC resource management, distributed computing and scientific visualization web portals.

david-loureiro-chapo_vignette

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Pioneering Programmers Awarded Presidential Medal of Freedom

November 30, 2016

In an awards ceremony on November 22, President Barack Obama recognized 21 recipients with the Presidential Medal of Freedom, the Nation’s highest civilian honor. Read more…

By Tiffany Trader

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This