Exascale Resilience Turns a Corner

By Tiffany Trader

July 21, 2014

While advancing the field of HPC into the exascale era is beset by many obstacles, resiliency might be the most thorny of all. As the number of cores proliferate so too do the number of incorrect behaviors, threatening not just the operation of the machine, but the validity of the results as well. When you consider that exascale machines will employ billion-way parallelism, the necessity to address this problem is clear.

“Over the past few years resilience has became a major issue for HPC systems, in particular in the perspective of large Petascale systems and future Exascale ones.” These words are the opening text of a 2009 technical report by the Illinois-INRIA Joint Laboratory on PetaScale Computing.

The study did a very good job outlining the resilience challenge, which while no means the only problem for exascale computing, is certainly one of the most vexing. To whit, the troubling assertion (written in 2009) that “the time to checkpoint and restart may exceed the mean time to interrupt of top supercomputers before 2015.”

Recently, the authors – HPC’ers Franck Cappello, Al Geist, William Gropp, Sanjay Kale, Bill Kramer, and Marc Snir – revisited that earlier work to elucidate some of the changes that have taken place over the last five years. While there is still a lot of work to be done, the picture that emerges is decidedly more optimistic than it was in 2009.

“The past five years have seen extraordinary technical progress in many domains related to exascale resilience,” the authors report. “Several technical options, initially considered inapplicable or unrealistic in the HPC context, have demonstrated surprising successes. Despite this progress, the exascale resilience problem is not solved, and the community is still facing the difficult challenge of ensuring that exascale applications complete and generate correct results while running on unstable systems.”

The paper defines resilience in the context of computer platforms as “the techniques for keeping applications running to a correct solution in a timely and efficient manner despite underlying system faults.” Faults, which are the result of errors, are dealt with by predicting, preventing, removing or tolerating them. Faults can occur at all levels of the stack, and thus fault tolerance extends to the hardware, system and application software.

The first section of the paper is devoted to describing the exascale resilience problem. In the words of the authors: “Future exascale systems are expected to exhibit much higher fault rates than current systems do, for various reasons relating to both hardware and software.”

All else being equal, a system that was one-thousand times more powerful, would have one-thousand times more failures. While that simple statistic would be distressing enough, the problem is worse than that. Smaller feature sizes make CPUs more error prone, and shrunken transistors and wires age faster causing even more permanent failures down the road. The same techniques that reduce current leakage also contribute to increased faults. There are steps that vendors can take to reduce error frequency, such as adding circuits, but doing so adds material and energy cost.

Hardware is by no means the only challenge. More complex hardware is matched by more complex system software, which is also more error-prone. Application codes are also increasingly sophisticated and again more error-prone. Research suggests that large parallel jobs may fail as often as once every 30 minutes on exascale platforms.

On the positive side, there have been some important lessons learned now that the community has a few years of experience working with petascale machines. Current petascale platforms experience multiple component failures every day, according to the authors. One study on Blue Waters showed an event that required remedial repair action occurred on average every 4.2 hours and that system-wide events occurred approximately every 160 hours.

The authors report that in its first year of full production, Blue Waters failure rates fell by 50 percent. They note that other supercomputing centers have experienced similar improvements.

The bulk of this 28-page paper is dedicated to laying out a survey of what the community has learned since 2009 (section four) and a summary of the research problems still considered critical by the community (section five).

The authors note that a lot of progress has occurred in handling fail-stop errors by checkpointing.

From the paper: “The norm in 2009 was to store the application state on remote storage, generally a parallel file system, through I/O nodes. Checkpoint time was significant (often 15–30 minutes), because of the limited bandwidth of the parallel file system. When checkpoint time is close to the MTBF, the system spends all its time checkpointing and restarting, with little forward progress. Since the MTJI may be an hour or less on exascale platforms, new techniques are needed in order to reduce checkpoint time.”

This can be accomplished by reducing the checkpoint size. For this, programmers are in the best position to know what is the critical data, but this requires a manual approach. “Annotations about ways to protect or check key data, computations, or communications are still a relevant direction,” the authors state.

Another avenue is to reduce the usage of disks for checkpoint storage for example by using in-memory checkpointing or multi-level checkpointing technologies, which involves combining several storage technologies to optimize overhead and reliability. Partial restart techniques also enable accelerated recovery.

Forward recovery is another way to handle errors. In this scenario, “the application needs to be notified of the error and runs forward recovery steps that may involve access to past or remote data to correct (sometimes partially) or compensate the error and its effect, depending on the latency of the error detection.”

The MPI standard does not provide any specification on the behavior of an MPI application after a fault so several resilient MPI designs and implementations have been developed to fill this void. The first effort was the FT-MPI (fault-tolerant MPI) library. Another called ULFM enables the application to be notified of errors and to reorganize the execution for forward recovery. The MPI Forum has not yet reached a consensus on the characteristics of a resilient MPI.

Replication is another approach for resilience in HPC but it is beset by several constraints including high overhead.

An area that has made “exceptional progress” is recent years is failure prediction, specifically an approach that combines data mining with signal analysis and methods to spot outliers. The authors claim results from the Universty of Illinois at Urbana-Champaign and the Illinois Institute of Technology clearly demonstrate the feasibility of error prediction for the Blue Waters Cray system and the IBM Blue Gene. In fact, Blue Waters staff has been able to predict failures with more than 60 percent accuracy, however the authors also say that higher accuracy still is needed to switch from pure reactive fault tolerance to truly proactive fault tolerance.

This leads to the question of how to run a failure predictor on large infrastructures. Local and global methods each have their merits and drawbacks.

There’s also a side effect of all this error and fault handling: it places an additional energy demand on the computing system. The authors refer to another paper that shows that for clusters, there was not much difference in the energy footprint of different checkpointing protocols. The same study suggests that energy demand correlates more with execution time than it does with the power consumption of the operation performed by the various protocols. Models developed to further study the issue point to parallel recovery as being superior to coordinating checkpointing protocols from an energy perspective since parallel recovery takes less time.

Another difficult challenge facing extreme-scale HPC is the rise of silent data corruptions (SDCs). Interestingly, studies show that while SDCs lead to hangs and crashes, only a small fraction of them corrupt results. But getting the wrong result has researchers concerned enough to explore mitigation strategies. The classic solution is to detect at least some of these silent errors, replicate executions and compare results. Here again, there is a high overhead cost.

A second thornier problem is the presupposition that execution generates identical results. The authors write: “the trend toward more asynchrony and more load balancing plays against deterministic executions.” A workaround was developed, called approximate replication, which runs the normal computation along with an approximate computation. The comparison uses upper and lower bounds and only results outside the bounds are suspect.

There has also been a movement towards integrative approaches that take into consideration all the layers from the hardware to the application. Currently there are at least five projects coming at this problem from different ways.

Other areas that have made huge strides since 2009 include algorithmic approaches to detecting and recovering from faults and so-called fault-oblivious iterative methods. One important change has been the separation of faults into two categories. Fail-stop refers to a process that fails and stops, causing a loss of all state in the process, while fail-continue means a process fails but continues, often due to a transient error. It is expected that transient faults (also called soft faults) are likely
to be the most troubling type of faults in exascale systems, thus it is promising that considerable progress has been made in this area.

In the final section of the paper, the authors lay out several research areas that are closely aligned with supporting resiliency at exascale. These are:

– Characterization of hardware faults
– Development of a standardized fault-handling model
– Improved fault prediction, containment, detection, notification, and recovery
– Programming abstractions for resilience
– Standardized evaluation of fault-tolerance approaches

There is a lot of emphasis placed on informing the research process as much as possible to support better choices. The characterization of hardware faults would help researchers know which problems had the highest probability of occurring and which wreaked the most havoc, so they can maximize their efforts. The first step here would be to systematically gather information about current systems.

Regarding the second bullet point, the authors write: “A useful fault model would have a standard set of recovery services that all computer suppliers would provide to the software developers to develop resilient exascale applications.”

Of course error detection is not very useful if faults are not detected. To this point, the authors are emphatic that further research is needed to pinpoint silent errors. Getting to exascale requires better error detection, and there is currently no technology that can handle frequent SDC other than brute force and replication.

Another void exists when it comes to programming abstractions for resilience. Current research shows that several programming applications will need to be developed and supported in order to develop resilient exascale applications.

The final focus area would provide a practical way of testing new approaches against known approaches, and just as importantly it would provide a means of measuring the effectiveness of a given approach on different architectures and at different scales. To achieve the goal of a standardized evaluation system, the authors envision the “the development of a portable, scalable test suite that simulates all the errors from the fault model and measures the recovery time, services required, and the resources used for a given resilient exascale application.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scientists Conduct First Quantum Simulation of Atomic Nucleus

May 23, 2018

OAK RIDGE, Tenn., May 23, 2018—Scientists at the Department of Energy’s Oak Ridge National Laboratory are the first to successfully simulate an atomic nucleus using a quantum computer. The results, published in Ph Read more…

By Rachel Harken, ORNL

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Francisco, one would be tempted to dismiss its claims of inventing Read more…

By John Russell

Intel, Micro Debut Quad-Level Cell NAND Flash

May 22, 2018

Chipmakers continue to gear designs toward AI and other demanding cloud workloads that take advantage of datacenter flash storage capacity. To that end, memory specialist Micron Technology Inc. began shipping compact sol Read more…

By George Leopold

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combined peak computing capacity, the new systems will extend the a Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

US Forms AI Brain Trust

May 11, 2018

Amid calls for a U.S. strategy for promoting AI development, the Trump administration is forming a senior-level panel to help coordinate government and industry research efforts. The Select Committee on Artificial Intelligence was announced Thursday (May 10) during a White House summit organized by the Office of Science and Technology Policy (OSTP). Read more…

By George Leopold

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This