Exascale Resilience Turns a Corner

By Tiffany Trader

July 21, 2014

While advancing the field of HPC into the exascale era is beset by many obstacles, resiliency might be the most thorny of all. As the number of cores proliferate so too do the number of incorrect behaviors, threatening not just the operation of the machine, but the validity of the results as well. When you consider that exascale machines will employ billion-way parallelism, the necessity to address this problem is clear.

“Over the past few years resilience has became a major issue for HPC systems, in particular in the perspective of large Petascale systems and future Exascale ones.” These words are the opening text of a 2009 technical report by the Illinois-INRIA Joint Laboratory on PetaScale Computing.

The study did a very good job outlining the resilience challenge, which while no means the only problem for exascale computing, is certainly one of the most vexing. To whit, the troubling assertion (written in 2009) that “the time to checkpoint and restart may exceed the mean time to interrupt of top supercomputers before 2015.”

Recently, the authors – HPC’ers Franck Cappello, Al Geist, William Gropp, Sanjay Kale, Bill Kramer, and Marc Snir – revisited that earlier work to elucidate some of the changes that have taken place over the last five years. While there is still a lot of work to be done, the picture that emerges is decidedly more optimistic than it was in 2009.

“The past five years have seen extraordinary technical progress in many domains related to exascale resilience,” the authors report. “Several technical options, initially considered inapplicable or unrealistic in the HPC context, have demonstrated surprising successes. Despite this progress, the exascale resilience problem is not solved, and the community is still facing the difficult challenge of ensuring that exascale applications complete and generate correct results while running on unstable systems.”

The paper defines resilience in the context of computer platforms as “the techniques for keeping applications running to a correct solution in a timely and efficient manner despite underlying system faults.” Faults, which are the result of errors, are dealt with by predicting, preventing, removing or tolerating them. Faults can occur at all levels of the stack, and thus fault tolerance extends to the hardware, system and application software.

The first section of the paper is devoted to describing the exascale resilience problem. In the words of the authors: “Future exascale systems are expected to exhibit much higher fault rates than current systems do, for various reasons relating to both hardware and software.”

All else being equal, a system that was one-thousand times more powerful, would have one-thousand times more failures. While that simple statistic would be distressing enough, the problem is worse than that. Smaller feature sizes make CPUs more error prone, and shrunken transistors and wires age faster causing even more permanent failures down the road. The same techniques that reduce current leakage also contribute to increased faults. There are steps that vendors can take to reduce error frequency, such as adding circuits, but doing so adds material and energy cost.

Hardware is by no means the only challenge. More complex hardware is matched by more complex system software, which is also more error-prone. Application codes are also increasingly sophisticated and again more error-prone. Research suggests that large parallel jobs may fail as often as once every 30 minutes on exascale platforms.

On the positive side, there have been some important lessons learned now that the community has a few years of experience working with petascale machines. Current petascale platforms experience multiple component failures every day, according to the authors. One study on Blue Waters showed an event that required remedial repair action occurred on average every 4.2 hours and that system-wide events occurred approximately every 160 hours.

The authors report that in its first year of full production, Blue Waters failure rates fell by 50 percent. They note that other supercomputing centers have experienced similar improvements.

The bulk of this 28-page paper is dedicated to laying out a survey of what the community has learned since 2009 (section four) and a summary of the research problems still considered critical by the community (section five).

The authors note that a lot of progress has occurred in handling fail-stop errors by checkpointing.

From the paper: “The norm in 2009 was to store the application state on remote storage, generally a parallel file system, through I/O nodes. Checkpoint time was significant (often 15–30 minutes), because of the limited bandwidth of the parallel file system. When checkpoint time is close to the MTBF, the system spends all its time checkpointing and restarting, with little forward progress. Since the MTJI may be an hour or less on exascale platforms, new techniques are needed in order to reduce checkpoint time.”

This can be accomplished by reducing the checkpoint size. For this, programmers are in the best position to know what is the critical data, but this requires a manual approach. “Annotations about ways to protect or check key data, computations, or communications are still a relevant direction,” the authors state.

Another avenue is to reduce the usage of disks for checkpoint storage for example by using in-memory checkpointing or multi-level checkpointing technologies, which involves combining several storage technologies to optimize overhead and reliability. Partial restart techniques also enable accelerated recovery.

Forward recovery is another way to handle errors. In this scenario, “the application needs to be notified of the error and runs forward recovery steps that may involve access to past or remote data to correct (sometimes partially) or compensate the error and its effect, depending on the latency of the error detection.”

The MPI standard does not provide any specification on the behavior of an MPI application after a fault so several resilient MPI designs and implementations have been developed to fill this void. The first effort was the FT-MPI (fault-tolerant MPI) library. Another called ULFM enables the application to be notified of errors and to reorganize the execution for forward recovery. The MPI Forum has not yet reached a consensus on the characteristics of a resilient MPI.

Replication is another approach for resilience in HPC but it is beset by several constraints including high overhead.

An area that has made “exceptional progress” is recent years is failure prediction, specifically an approach that combines data mining with signal analysis and methods to spot outliers. The authors claim results from the Universty of Illinois at Urbana-Champaign and the Illinois Institute of Technology clearly demonstrate the feasibility of error prediction for the Blue Waters Cray system and the IBM Blue Gene. In fact, Blue Waters staff has been able to predict failures with more than 60 percent accuracy, however the authors also say that higher accuracy still is needed to switch from pure reactive fault tolerance to truly proactive fault tolerance.

This leads to the question of how to run a failure predictor on large infrastructures. Local and global methods each have their merits and drawbacks.

There’s also a side effect of all this error and fault handling: it places an additional energy demand on the computing system. The authors refer to another paper that shows that for clusters, there was not much difference in the energy footprint of different checkpointing protocols. The same study suggests that energy demand correlates more with execution time than it does with the power consumption of the operation performed by the various protocols. Models developed to further study the issue point to parallel recovery as being superior to coordinating checkpointing protocols from an energy perspective since parallel recovery takes less time.

Another difficult challenge facing extreme-scale HPC is the rise of silent data corruptions (SDCs). Interestingly, studies show that while SDCs lead to hangs and crashes, only a small fraction of them corrupt results. But getting the wrong result has researchers concerned enough to explore mitigation strategies. The classic solution is to detect at least some of these silent errors, replicate executions and compare results. Here again, there is a high overhead cost.

A second thornier problem is the presupposition that execution generates identical results. The authors write: “the trend toward more asynchrony and more load balancing plays against deterministic executions.” A workaround was developed, called approximate replication, which runs the normal computation along with an approximate computation. The comparison uses upper and lower bounds and only results outside the bounds are suspect.

There has also been a movement towards integrative approaches that take into consideration all the layers from the hardware to the application. Currently there are at least five projects coming at this problem from different ways.

Other areas that have made huge strides since 2009 include algorithmic approaches to detecting and recovering from faults and so-called fault-oblivious iterative methods. One important change has been the separation of faults into two categories. Fail-stop refers to a process that fails and stops, causing a loss of all state in the process, while fail-continue means a process fails but continues, often due to a transient error. It is expected that transient faults (also called soft faults) are likely
to be the most troubling type of faults in exascale systems, thus it is promising that considerable progress has been made in this area.

In the final section of the paper, the authors lay out several research areas that are closely aligned with supporting resiliency at exascale. These are:

– Characterization of hardware faults
– Development of a standardized fault-handling model
– Improved fault prediction, containment, detection, notification, and recovery
– Programming abstractions for resilience
– Standardized evaluation of fault-tolerance approaches

There is a lot of emphasis placed on informing the research process as much as possible to support better choices. The characterization of hardware faults would help researchers know which problems had the highest probability of occurring and which wreaked the most havoc, so they can maximize their efforts. The first step here would be to systematically gather information about current systems.

Regarding the second bullet point, the authors write: “A useful fault model would have a standard set of recovery services that all computer suppliers would provide to the software developers to develop resilient exascale applications.”

Of course error detection is not very useful if faults are not detected. To this point, the authors are emphatic that further research is needed to pinpoint silent errors. Getting to exascale requires better error detection, and there is currently no technology that can handle frequent SDC other than brute force and replication.

Another void exists when it comes to programming abstractions for resilience. Current research shows that several programming applications will need to be developed and supported in order to develop resilient exascale applications.

The final focus area would provide a practical way of testing new approaches against known approaches, and just as importantly it would provide a means of measuring the effectiveness of a given approach on different architectures and at different scales. To achieve the goal of a standardized evaluation system, the authors envision the “the development of a portable, scalable test suite that simulates all the errors from the fault model and measures the recovery time, services required, and the resources used for a given resilient exascale application.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At Long Last, Supercomputing Helps to Map the Poles

August 22, 2019

For years,” Paul Morin wrote, “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place... Read more…

By Oliver Peckham

Xilinx Says Its New FPGA is World’s Largest

August 21, 2019

In this age of exploding “technology disaggregation” – in which the Big Bang emanating from the Intel x86 CPU has produced significant advances in CPU chips and a raft of alternative, accelerated architectures... Read more…

By Doug Black

Supercomputers Generate Universes to Illuminate Galactic Formation

August 20, 2019

With advanced imaging and satellite technologies, it’s easier than ever to see a galaxy – but understanding how they form (a process that can take billions of years) is a different story. Now, a team of researchers f Read more…

By Oliver Peckham

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Keys to Attracting the Newest HPC Talent – Post-Millennials

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

For engineers and scientists growing up in the 80s, the current state of HPC makes perfect sense. Read more…

Singularity Moves Up the Container Value Chain

August 20, 2019

The enterprise version of the Singularity HPC container platform released this week by Sylabs is designed to allow users to create, secure and share the high-end containers in self-hosted production deployments. The e Read more…

By George Leopold

At Long Last, Supercomputing Helps to Map the Poles

August 22, 2019

For years,” Paul Morin wrote, “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place... Read more…

By Oliver Peckham

IBM Deepens Plunge into Open Source; OpenPOWER to Join Linux Foundation

August 20, 2019

IBM today announced it was contributing the instruction set (ISA) for its Power microprocessor and the designs for the Open Coherent Accelerator Processor Inter Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This