Of Micelles and Machines: HPC Simulations Transform Everyday Household Products

By Jan Zverina

July 22, 2014

Have you ever dropped your brand new razor or a full bottle of hand soap on a tiled bathroom floor and wondered why it didn’t simply shatter into a dozen pieces or split apart and create a gooey mess? Maybe next time that happens, you’ll thank computer modeling and simulations, not just your lucky stars.

Screen Shot 2014-07-22 at 8.52.58 AM“What most people don’t know, is behind each one of those everyday mishaps, as well as the routine use of all those household products that help get us through each day, is an amazing amount of science, engineering, and high-performance computing,” said Tom Lange, Director of R&D, Modeling & Simulation for the Procter & Gamble Company (P&G), who addressed attendees at XSEDE14, this year’s conference of the National Science Foundation’s (NSF) Extreme Science and Engineering Discovery Environment (XSEDE) program in Atlanta this month.

Lange’s responsibilities at P&G – founded 177 years ago and now doing almost $85 billion annually in global sales – spans consumer modeling; computational chemistry and biology; computer-aided engineering in structures, fluids, chemicals and controls; and production system throughput and reliability. From studying the micelles, or an aggregate of molecules in a solution such as detergents, to modeling the stratum corneum to better understand the physical properties of skin, Lange has spent his 36-year career modeling and simulating product formulations as well as their packaging. He and his colleagues have even optimized how these products are mass-produced – often to the tune of one billion items in just a matter of days – enabling P&G to achieve volumes that dwarf those of automobiles or even now-ubiquitous electronic devices such as laptops and mobile phones.

Lange has studied aspects of these household products that most of us simply take for granted: exactly how household cleaners must remove stains while protecting the fabric as well as one’s skin, how the varied sizes of infants directly correlate to fit from a diaper – and its urine leakage risk. He and his team at P&G have been using various XSEDE resources and expertise, such as those at the Ohio Supercomputer Center and the National Center for Supercomputing Applications (NCSA), in addition to other resources including the Department of Energy’s national labs at Los Alamos, Oak Ridge, and Sandia to help solve a wide range of challenges, primarily by jointly developing detailed simulations that predict performance, durability, and other metrics long before these consumer products hit the store shelves.

“High-performance computing is the theme that made all of this possible,” Lange told XSEDE14 attendees, noting that while advances during the last decade alone have enabled much more accurate simulations demanded by what he calls “the relentless pursuit of realism.” As a society, he noted, we have been on this learning curve for at least the last 60 years or more.

“I like to say that computing and modeling and simulation have changed science and engineering the way aviation changed travel,” Lange said, noting that at some point predictive modeling became an integral part of engineering and analysis replacing the crash-testing expensive prototypes – be it an aircraft or a new line of aerosol cans –demonstrations that bore no resemblance to the final production versions in the first place.

“I’m in the business of shaping decisions,” Lange said. “I make money with modeling and simulations, by either doing something, or not doing something that we would have done by experiment. I would much rather do stuff that tells you those things before they happen, not after.” 

Contradictions and Scale

From an engineering perspective, many consumers may still think that everyday consumable goods such as detergents or diapers are ‘low tech’, when in fact the challenges faced by scientists and engineers working on P&G’s extensive product portfolio are in principle similar to those in rocket science. “High tech is not just for rockets, airplanes, cars, drugs, or smart phones” said Lange.

Computer-generated images from kinematic simulations measuring joint and muscle activity in the design of a laundry detergent bottle. Image courtesy of Tom Lange, P&G.
Computer-generated images from kinematic simulations measuring joint and muscle activity in the design of a laundry detergent bottle. Image courtesy of Tom Lange, P&G.

In describing P&G’s product development challenges as ‘contradictions and scale’, Lange explained that often, even the most common household product must have characteristics that are scientifically opposed to each other to work as flawlessly and effectively as possible. That’s where HPC resources and expertise come in, by making it possible to model many thousands of iterations of a single product characteristic with less time and less cost, but with consistent results – and no unpleasant surprises for consumers.

“Paper towels must be absorbent, but be very strong when wet,” he said. “Diapers need to be absorbent, but not leak and fit and comfort babies like cloth. Laundry treatments need to remove stains but protect fabrics, yet be concentrated and still be easy to use. Containers should never leak, but open easily. When dropped, they shouldn’t break, but they should use a bare minimum of plastic that also recycles well. Most importantly, all these products must represent a good value for improving daily life, not just affordable for use once in a while.”

As for scale, using computational science to improve products is also done to meet the demands of high-volume production. Taken together, contradiction and scale require a systematic process: first, a business challenge must be translated into a science challenge and expressed in science equations. Then all relevant data must be collected, such as material properties, production capabilities, even consumer ratings. Then simulations must be conducted and then effectively communicated at a non-expert level before final decisions are made and actual output begins.

Such computational modeling is used across the entire product spectrum and involves computer-aided engineering (CAE) skills in just about every area. For example, kinetic simulations are done to measure muscle activity and joint angles of the arm and hand when a person lifts a full jug of laundry detergent and twists off the measuring cap time after time. Others focus on how to produce billions of diapers each year that are absorbent, comfortable, and leak-proof. Many of these simulations require cross-disciplinary CAE skills.

“Here’s one – free surface flow on and through a compressible, partially saturated porous media with non-Newtonian behavior. That’s a kid going potty in his diaper,” said Lange.

Looking Ahead

A key challenge for companies such as P&G will be to ensure that computational analysis is eventually democratized, Lange told XSEDE participants. “High-performance computing and modeling and simulation skills need to be a base for all scientists and engineers. We need to be replacing the hand calculations of our education – most of them but not all of them – with computation and calculation.”

Another challenge will be for companies to develop an archive of its many thousands of simulations, and to be able to have the capability to reproduce an analysis done maybe five years ago by another researcher, said Lange. “We need a ‘library science’ to emerge for how we record and manage our simulations.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Answered Prayers for High Frequency Traders? Latency Cut to 20 Nanoseconds

January 23, 2017

“You can buy your way out of bandwidth problems. But latency is divine.”

This sentiment, from Intel Technical Computing Group CTO Mark Seager, seems as old as the Bible, a truth universally acknowledged. Read more…

By Doug Black

CMU’s Latest “Card Shark” – Libratus – is Beating the Poker Pros (Again)

January 20, 2017

It’s starting to look like Carnegie Mellon University has a gambling problem – can’t stay away from the poker table. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Enhancing Patient Care with Next-Generation Sequencing

In the ever-evolving world of life sciences, speed, accuracy, and savings are more important than ever. Today’s scientists and healthcare professionals are leveraging high-performance computing (HPC) solutions to solve the world’s greatest health problems and accelerate the diagnoses and treatment of a variety of medical conditions. Read more…

Weekly Twitter Roundup (Jan. 19, 2017)

January 19, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Answered Prayers for High Frequency Traders? Latency Cut to 20 Nanoseconds

January 23, 2017

“You can buy your way out of bandwidth problems. But latency is divine.”

This sentiment, from Intel Technical Computing Group CTO Mark Seager, seems as old as the Bible, a truth universally acknowledged. Read more…

By Doug Black

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This