Of Micelles and Machines: HPC Simulations Transform Everyday Household Products

By Jan Zverina

July 22, 2014

Have you ever dropped your brand new razor or a full bottle of hand soap on a tiled bathroom floor and wondered why it didn’t simply shatter into a dozen pieces or split apart and create a gooey mess? Maybe next time that happens, you’ll thank computer modeling and simulations, not just your lucky stars.

Screen Shot 2014-07-22 at 8.52.58 AM“What most people don’t know, is behind each one of those everyday mishaps, as well as the routine use of all those household products that help get us through each day, is an amazing amount of science, engineering, and high-performance computing,” said Tom Lange, Director of R&D, Modeling & Simulation for the Procter & Gamble Company (P&G), who addressed attendees at XSEDE14, this year’s conference of the National Science Foundation’s (NSF) Extreme Science and Engineering Discovery Environment (XSEDE) program in Atlanta this month.

Lange’s responsibilities at P&G – founded 177 years ago and now doing almost $85 billion annually in global sales – spans consumer modeling; computational chemistry and biology; computer-aided engineering in structures, fluids, chemicals and controls; and production system throughput and reliability. From studying the micelles, or an aggregate of molecules in a solution such as detergents, to modeling the stratum corneum to better understand the physical properties of skin, Lange has spent his 36-year career modeling and simulating product formulations as well as their packaging. He and his colleagues have even optimized how these products are mass-produced – often to the tune of one billion items in just a matter of days – enabling P&G to achieve volumes that dwarf those of automobiles or even now-ubiquitous electronic devices such as laptops and mobile phones.

Lange has studied aspects of these household products that most of us simply take for granted: exactly how household cleaners must remove stains while protecting the fabric as well as one’s skin, how the varied sizes of infants directly correlate to fit from a diaper – and its urine leakage risk. He and his team at P&G have been using various XSEDE resources and expertise, such as those at the Ohio Supercomputer Center and the National Center for Supercomputing Applications (NCSA), in addition to other resources including the Department of Energy’s national labs at Los Alamos, Oak Ridge, and Sandia to help solve a wide range of challenges, primarily by jointly developing detailed simulations that predict performance, durability, and other metrics long before these consumer products hit the store shelves.

“High-performance computing is the theme that made all of this possible,” Lange told XSEDE14 attendees, noting that while advances during the last decade alone have enabled much more accurate simulations demanded by what he calls “the relentless pursuit of realism.” As a society, he noted, we have been on this learning curve for at least the last 60 years or more.

“I like to say that computing and modeling and simulation have changed science and engineering the way aviation changed travel,” Lange said, noting that at some point predictive modeling became an integral part of engineering and analysis replacing the crash-testing expensive prototypes – be it an aircraft or a new line of aerosol cans –demonstrations that bore no resemblance to the final production versions in the first place.

“I’m in the business of shaping decisions,” Lange said. “I make money with modeling and simulations, by either doing something, or not doing something that we would have done by experiment. I would much rather do stuff that tells you those things before they happen, not after.” 

Contradictions and Scale

From an engineering perspective, many consumers may still think that everyday consumable goods such as detergents or diapers are ‘low tech’, when in fact the challenges faced by scientists and engineers working on P&G’s extensive product portfolio are in principle similar to those in rocket science. “High tech is not just for rockets, airplanes, cars, drugs, or smart phones” said Lange.

Computer-generated images from kinematic simulations measuring joint and muscle activity in the design of a laundry detergent bottle. Image courtesy of Tom Lange, P&G.
Computer-generated images from kinematic simulations measuring joint and muscle activity in the design of a laundry detergent bottle. Image courtesy of Tom Lange, P&G.

In describing P&G’s product development challenges as ‘contradictions and scale’, Lange explained that often, even the most common household product must have characteristics that are scientifically opposed to each other to work as flawlessly and effectively as possible. That’s where HPC resources and expertise come in, by making it possible to model many thousands of iterations of a single product characteristic with less time and less cost, but with consistent results – and no unpleasant surprises for consumers.

“Paper towels must be absorbent, but be very strong when wet,” he said. “Diapers need to be absorbent, but not leak and fit and comfort babies like cloth. Laundry treatments need to remove stains but protect fabrics, yet be concentrated and still be easy to use. Containers should never leak, but open easily. When dropped, they shouldn’t break, but they should use a bare minimum of plastic that also recycles well. Most importantly, all these products must represent a good value for improving daily life, not just affordable for use once in a while.”

As for scale, using computational science to improve products is also done to meet the demands of high-volume production. Taken together, contradiction and scale require a systematic process: first, a business challenge must be translated into a science challenge and expressed in science equations. Then all relevant data must be collected, such as material properties, production capabilities, even consumer ratings. Then simulations must be conducted and then effectively communicated at a non-expert level before final decisions are made and actual output begins.

Such computational modeling is used across the entire product spectrum and involves computer-aided engineering (CAE) skills in just about every area. For example, kinetic simulations are done to measure muscle activity and joint angles of the arm and hand when a person lifts a full jug of laundry detergent and twists off the measuring cap time after time. Others focus on how to produce billions of diapers each year that are absorbent, comfortable, and leak-proof. Many of these simulations require cross-disciplinary CAE skills.

“Here’s one – free surface flow on and through a compressible, partially saturated porous media with non-Newtonian behavior. That’s a kid going potty in his diaper,” said Lange.

Looking Ahead

A key challenge for companies such as P&G will be to ensure that computational analysis is eventually democratized, Lange told XSEDE participants. “High-performance computing and modeling and simulation skills need to be a base for all scientists and engineers. We need to be replacing the hand calculations of our education – most of them but not all of them – with computation and calculation.”

Another challenge will be for companies to develop an archive of its many thousands of simulations, and to be able to have the capability to reproduce an analysis done maybe five years ago by another researcher, said Lange. “We need a ‘library science’ to emerge for how we record and manage our simulations.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

URISC@SC17 and the #LongestLastMile

January 11, 2018

A multinational delegation recently attended the Understanding Risk in Shared CyberEcosystems workshop, or URISC@SC17, in Denver, Colorado. URISC participants and presenters from 11 countries, including eight African nations, 12 U.S. states, Canada, India and Nepal, also attended SC17, the annual international conference for high performance computing, networking, storage and analysis that drew nearly 13,000 attendees. Read more…

By Elizabeth Leake, STEM-Trek Nonprofit

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

Intel, Micron to Go Their Separate 3D NAND Ways

January 10, 2018

The announcement on Monday (Jan. 8) that Intel and Micron have decided to “update” – that is, end – their long-term joint development partnership for 3D NAND technology is nearly as interesting an exercise in pub Read more…

By Doug Black

HPE Extreme Performance Solutions

The Living Heart Project Wins Three Prestigious Awards for HPC Simulation

Imagine creating a treatment plan for a patient on the other side of the world, or testing a drug without ever putting subjects at risk. Read more…

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect application performance by 10-30 percent. The patch makes any call fro Read more…

By Rosemary Francis

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

The @hpcnotes Predictions for HPC in 2018

January 4, 2018

I’m not averse to making predictions about the world of High Performance Computing (and Supercomputing, Cloud, etc.) in person at conferences, meetings, causa Read more…

By Andrew Jones

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Independent Hyperion Research Will Chart its Own Course

December 19, 2017

Hyperion Research, formerly the HPC research and consulting practice within IDC, has become an independent company with Earl Joseph, the long-time leader of the Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This