Charming Exascale Power Problems

By Osman Sarood, Laxmikant Kale & Esteban Meneses

July 30, 2014

Power, energy and reliability present major challenges to HPC researchers in their endeavor to build larger machines. As we approach the exascale era, both hardware and software designers need to account for these challenges while optimizing performance. The Parallel Programming Laboratory (PPL) at the University of Illinois at Urbana-Champaign (UIUC) has been actively working on meeting these challenges by leveraging the adaptive runtime system of the Charm++ programming model.

Current petascale machines have Mean Time Between Failures (MTBF) that can be anywhere from a few hours to days. Some reports predict exascale machines will have an MTBF in the range of 35-40 minutes. Intriguingly, past research describes a relation between a processor’s temperature and its reliability: failure rates double with every 10C increase in temperature. Our work applies this relationship between processor temperature and reliability by restraining processor temperature, thereby reducing the frequency of faults and consequently improving application performance in fault-prone environments.

There are costs and benefits to improving reliability through temperature control driven by Dynamic Voltage and Frequency Scaling (DVFS). Improved reliability helps not only by directly decreasing failures; it also allows the code to checkpoint less frequently, decreasing overhead. However, it comes at a cost of slower processors and increased load imbalance.

By restraining processor temperatures, we can empower the runtime system to set the expected failure rate of the system, adjusting it within a feasible range. Our control strategy lets each processor work at its maximum frequency as long as its temperature is below a threshold parameter. If a processor’s temperature crosses the maximum threshold, it is controlled by decreasing the voltage and frequency using DVFS. When the voltage and frequency are reduced, its power consumption will drop and hence the processor’s temperature will fall.

When DVFS adjusts frequencies differently across the cores in a cluster, the workloads on those cores change relative to one another. This can significantly degrade performance of a tightly coupled parallel application, where processors synchronize after a time step before proceeding to the next time step. We mitigate the resultant timing penalty with a load balancing strategy that is conscious of the difference in speeds for different processors.

Our load balancing strategy, based on overdecomposition and object migration, uses the Charm++ adaptive runtime system to increase processor utilization. It analyzes the current load of each processor according to its new frequency and determines if it is overloaded or under-loaded. Once this decision is made, our scheme intelligently exchanges objects from overloaded (hot) processors to under-loaded (cold) processors to balance load. Temperature checking and corresponding load balancing can be invoked at user defined intervals.

One twist in this work is that different applications vary both in how hot they will make processors at a given frequency, and in how their performance is affected by different frequencies. Note that this implies different applications may actually experience a different MTBF on the same machine! Thus, we use three applications that present different conditions.

To gauge the effects of temperature control on MTBF and hence application performance, we formulate a model that relates total execution time of an application to reliability and the associated slowdown for temperature restraint. The model accounts for different execution speed at different frequencies, checkpointing overhead and recovery time depending on MTBF, and the additional overhead of experiencing and adapting to load imbalance. We validate the accuracy of our model for each application using a small experimental testbed.

We use our validated model to project the benefits of our scheme for larger machines. Our results point towards a tradeoff between improvement in reliability and the associated cost of applying temperature control. This tradeoff determines the optimal temperature threshold for a given application and machine size.

The following figure compares the machine efficiency (proportion of time spent doing useful work) for a 2D stencil application between a baseline run without temperature control and a constrained run with the temperature threshold set to 48C. Below 32K sockets, we get a lower efficiency than the baseline. However, above 32K sockets, our scheme starts outperforming the baseline case. For reference, the Blue Waters system at NCSA has nearly 50K sockets. For 256K sockets, our scheme is projected to operate the machine with an efficiency of 0.29 compared to 0.08 for the baseline. Finally, for 340K sockets, the baseline efficiency drops to 0.01, making the machine almost nonoperational, whereas our scheme can still operate the machine at an efficiency of 0.22.

exascale_race

These promising results encourage us to extend our work by investigating more detailed models, larger experimental systems, and more advanced fault tolerance protocols, such as message logging and parallel recovery.

This work is part of a research theme in our group: using adaptive runtime control to deal with the challenges presented by sophisticated applications and complexities of hardware. The Parallel Programming Laboratory has developed Charm++ for the past 20 years as a production quality parallel programming language, used in many CSE applications, including the Gordon Bell-winning biomolecular simulation program NAMD.

Author Biography:

Osman Sarood is a final year PhD student in the UIUC Computer Science department. His research is focused on performance optimization under thermal and power constraints.

Esteban Meneses is a Research Assistant Professor working in the Center for Simulation and Modeling at the University of Pittsburgh. His research is focused on load balancing and fault tolerance techniques for large-scale parallel applications. He holds a PhD degree in Computer Science from UIUC.

Laxmikant Kale received his PhD in computer science from State University of New York, Stony Brook, in 1985. He joined the Computer Science faculty of UIUC as an Assistant Professor in 1985, where he is currently employed as a full Professor. His research spans parallel computing, including parallel programming abstractions, scalability, automatic load balancing, communication optimizations, and fault tolerance. He has collaboratively developed several scalable CSE applications.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Google’s Bill Magro, an HPCwire Person to Watch in 2021

June 11, 2021

Last Fall Bill Magro joined Google as CTO of HPC, a newly created position, after two decades at Intel, where he was responsible for the company's HPC strategy. This interview was conducted by email at the beginning of A Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their correspondingly powerful cooling systems. As a result, these Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, with the U.K.-based Cambridge Quantum Computing (CQC), which Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled its in-person component with a couple months’ notice, ISC Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

AWS Solution Channel

Building highly-available HPC infrastructure on AWS

Reminder: You can learn a lot from AWS HPC engineers by subscribing to the HPC Tech Short YouTube channel, and following the AWS HPC Blog channel. Read more…

Space Weather Prediction Gets a Supercomputing Boost

June 9, 2021

Solar winds are a hot topic in the HPC world right now, with supercomputer-powered research spanning from the Princeton Plasma Physics Laboratory (which used Oak Ridge’s Titan system) to University College London (which used resources from the DiRAC HPC facility). One of the larger... Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their c Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

What is Thermodynamic Computing and Could It Become Important?

June 3, 2021

What, exactly, is thermodynamic computing? (Yes, we know everything obeys thermodynamic laws.) A trio of researchers from Microsoft, UC San Diego, and Georgia Tech have written an interesting viewpoint in the June issue... Read more…

AMD Introduces 3D Chiplets, Demos Vertical Cache on Zen 3 CPUs

June 2, 2021

At Computex 2021, held virtually this week, AMD showcased a new 3D chiplet architecture that will be used for future high-performance computing products set to Read more…

Nvidia Expands Its Certified Server Models, Unveils DGX SuperPod Subscriptions

June 2, 2021

Nvidia is busy this week at the virtual Computex 2021 Taipei technology show, announcing an expansion of its nascent Nvidia-certified server program, a range of Read more…

Using HPC Cloud, Researchers Investigate the COVID-19 Lab Leak Hypothesis

May 27, 2021

At the end of 2019, strange pneumonia cases started cropping up in Wuhan, China. As Wuhan (then China, then the world) scrambled to contain what would, of cours Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire