Charming Exascale Power Problems

By Osman Sarood, Laxmikant Kale & Esteban Meneses

July 30, 2014

Power, energy and reliability present major challenges to HPC researchers in their endeavor to build larger machines. As we approach the exascale era, both hardware and software designers need to account for these challenges while optimizing performance. The Parallel Programming Laboratory (PPL) at the University of Illinois at Urbana-Champaign (UIUC) has been actively working on meeting these challenges by leveraging the adaptive runtime system of the Charm++ programming model.

Current petascale machines have Mean Time Between Failures (MTBF) that can be anywhere from a few hours to days. Some reports predict exascale machines will have an MTBF in the range of 35-40 minutes. Intriguingly, past research describes a relation between a processor’s temperature and its reliability: failure rates double with every 10C increase in temperature. Our work applies this relationship between processor temperature and reliability by restraining processor temperature, thereby reducing the frequency of faults and consequently improving application performance in fault-prone environments.

There are costs and benefits to improving reliability through temperature control driven by Dynamic Voltage and Frequency Scaling (DVFS). Improved reliability helps not only by directly decreasing failures; it also allows the code to checkpoint less frequently, decreasing overhead. However, it comes at a cost of slower processors and increased load imbalance.

By restraining processor temperatures, we can empower the runtime system to set the expected failure rate of the system, adjusting it within a feasible range. Our control strategy lets each processor work at its maximum frequency as long as its temperature is below a threshold parameter. If a processor’s temperature crosses the maximum threshold, it is controlled by decreasing the voltage and frequency using DVFS. When the voltage and frequency are reduced, its power consumption will drop and hence the processor’s temperature will fall.

When DVFS adjusts frequencies differently across the cores in a cluster, the workloads on those cores change relative to one another. This can significantly degrade performance of a tightly coupled parallel application, where processors synchronize after a time step before proceeding to the next time step. We mitigate the resultant timing penalty with a load balancing strategy that is conscious of the difference in speeds for different processors.

Our load balancing strategy, based on overdecomposition and object migration, uses the Charm++ adaptive runtime system to increase processor utilization. It analyzes the current load of each processor according to its new frequency and determines if it is overloaded or under-loaded. Once this decision is made, our scheme intelligently exchanges objects from overloaded (hot) processors to under-loaded (cold) processors to balance load. Temperature checking and corresponding load balancing can be invoked at user defined intervals.

One twist in this work is that different applications vary both in how hot they will make processors at a given frequency, and in how their performance is affected by different frequencies. Note that this implies different applications may actually experience a different MTBF on the same machine! Thus, we use three applications that present different conditions.

To gauge the effects of temperature control on MTBF and hence application performance, we formulate a model that relates total execution time of an application to reliability and the associated slowdown for temperature restraint. The model accounts for different execution speed at different frequencies, checkpointing overhead and recovery time depending on MTBF, and the additional overhead of experiencing and adapting to load imbalance. We validate the accuracy of our model for each application using a small experimental testbed.

We use our validated model to project the benefits of our scheme for larger machines. Our results point towards a tradeoff between improvement in reliability and the associated cost of applying temperature control. This tradeoff determines the optimal temperature threshold for a given application and machine size.

The following figure compares the machine efficiency (proportion of time spent doing useful work) for a 2D stencil application between a baseline run without temperature control and a constrained run with the temperature threshold set to 48C. Below 32K sockets, we get a lower efficiency than the baseline. However, above 32K sockets, our scheme starts outperforming the baseline case. For reference, the Blue Waters system at NCSA has nearly 50K sockets. For 256K sockets, our scheme is projected to operate the machine with an efficiency of 0.29 compared to 0.08 for the baseline. Finally, for 340K sockets, the baseline efficiency drops to 0.01, making the machine almost nonoperational, whereas our scheme can still operate the machine at an efficiency of 0.22.

exascale_race

These promising results encourage us to extend our work by investigating more detailed models, larger experimental systems, and more advanced fault tolerance protocols, such as message logging and parallel recovery.

This work is part of a research theme in our group: using adaptive runtime control to deal with the challenges presented by sophisticated applications and complexities of hardware. The Parallel Programming Laboratory has developed Charm++ for the past 20 years as a production quality parallel programming language, used in many CSE applications, including the Gordon Bell-winning biomolecular simulation program NAMD.

Author Biography:

Osman Sarood is a final year PhD student in the UIUC Computer Science department. His research is focused on performance optimization under thermal and power constraints.

Esteban Meneses is a Research Assistant Professor working in the Center for Simulation and Modeling at the University of Pittsburgh. His research is focused on load balancing and fault tolerance techniques for large-scale parallel applications. He holds a PhD degree in Computer Science from UIUC.

Laxmikant Kale received his PhD in computer science from State University of New York, Stony Brook, in 1985. He joined the Computer Science faculty of UIUC as an Assistant Professor in 1985, where he is currently employed as a full Professor. His research spans parallel computing, including parallel programming abstractions, scalability, automatic load balancing, communication optimizations, and fault tolerance. He has collaboratively developed several scalable CSE applications.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Read more…

Core42 Is Building Its 172 Million-core AI Supercomputer in Texas

May 20, 2024

UAE-based Core42 is building an AI supercomputer with 172 million cores which will become operational later this year. The system, Condor Galaxy 3, was announced earlier this year and will have 192 nodes with Cerebras Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's latest weapon in the AI battle with GPU maker Nvidia and clou Read more…

ISC 2024 Student Cluster Competition

May 16, 2024

The 2024 ISC 2024 competition welcomed 19 virtual (remote) and eight in-person teams. The in-person teams participated in the conference venue and, while the virtual teams competed using the Bridges-2 supercomputers at t Read more…

Grace Hopper Gets Busy with Science 

May 16, 2024

Nvidia’s new Grace Hopper Superchip (GH200) processor has landed in nine new worldwide systems. The GH200 is a recently announced chip from Nvidia that eliminates the PCI bus from the CPU/GPU communications pathway.  Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of the last panels at ISC 2024 — the discussion was fascinat Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance c Read more…

Shutterstock 493860193

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Softw Read more…

ISC 2024: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Leading Solution Providers

Contributors

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire