Charming Exascale Power Problems

By Osman Sarood, Laxmikant Kale & Esteban Meneses

July 30, 2014

Power, energy and reliability present major challenges to HPC researchers in their endeavor to build larger machines. As we approach the exascale era, both hardware and software designers need to account for these challenges while optimizing performance. The Parallel Programming Laboratory (PPL) at the University of Illinois at Urbana-Champaign (UIUC) has been actively working on meeting these challenges by leveraging the adaptive runtime system of the Charm++ programming model.

Current petascale machines have Mean Time Between Failures (MTBF) that can be anywhere from a few hours to days. Some reports predict exascale machines will have an MTBF in the range of 35-40 minutes. Intriguingly, past research describes a relation between a processor’s temperature and its reliability: failure rates double with every 10C increase in temperature. Our work applies this relationship between processor temperature and reliability by restraining processor temperature, thereby reducing the frequency of faults and consequently improving application performance in fault-prone environments.

There are costs and benefits to improving reliability through temperature control driven by Dynamic Voltage and Frequency Scaling (DVFS). Improved reliability helps not only by directly decreasing failures; it also allows the code to checkpoint less frequently, decreasing overhead. However, it comes at a cost of slower processors and increased load imbalance.

By restraining processor temperatures, we can empower the runtime system to set the expected failure rate of the system, adjusting it within a feasible range. Our control strategy lets each processor work at its maximum frequency as long as its temperature is below a threshold parameter. If a processor’s temperature crosses the maximum threshold, it is controlled by decreasing the voltage and frequency using DVFS. When the voltage and frequency are reduced, its power consumption will drop and hence the processor’s temperature will fall.

When DVFS adjusts frequencies differently across the cores in a cluster, the workloads on those cores change relative to one another. This can significantly degrade performance of a tightly coupled parallel application, where processors synchronize after a time step before proceeding to the next time step. We mitigate the resultant timing penalty with a load balancing strategy that is conscious of the difference in speeds for different processors.

Our load balancing strategy, based on overdecomposition and object migration, uses the Charm++ adaptive runtime system to increase processor utilization. It analyzes the current load of each processor according to its new frequency and determines if it is overloaded or under-loaded. Once this decision is made, our scheme intelligently exchanges objects from overloaded (hot) processors to under-loaded (cold) processors to balance load. Temperature checking and corresponding load balancing can be invoked at user defined intervals.

One twist in this work is that different applications vary both in how hot they will make processors at a given frequency, and in how their performance is affected by different frequencies. Note that this implies different applications may actually experience a different MTBF on the same machine! Thus, we use three applications that present different conditions.

To gauge the effects of temperature control on MTBF and hence application performance, we formulate a model that relates total execution time of an application to reliability and the associated slowdown for temperature restraint. The model accounts for different execution speed at different frequencies, checkpointing overhead and recovery time depending on MTBF, and the additional overhead of experiencing and adapting to load imbalance. We validate the accuracy of our model for each application using a small experimental testbed.

We use our validated model to project the benefits of our scheme for larger machines. Our results point towards a tradeoff between improvement in reliability and the associated cost of applying temperature control. This tradeoff determines the optimal temperature threshold for a given application and machine size.

The following figure compares the machine efficiency (proportion of time spent doing useful work) for a 2D stencil application between a baseline run without temperature control and a constrained run with the temperature threshold set to 48C. Below 32K sockets, we get a lower efficiency than the baseline. However, above 32K sockets, our scheme starts outperforming the baseline case. For reference, the Blue Waters system at NCSA has nearly 50K sockets. For 256K sockets, our scheme is projected to operate the machine with an efficiency of 0.29 compared to 0.08 for the baseline. Finally, for 340K sockets, the baseline efficiency drops to 0.01, making the machine almost nonoperational, whereas our scheme can still operate the machine at an efficiency of 0.22.

exascale_race

These promising results encourage us to extend our work by investigating more detailed models, larger experimental systems, and more advanced fault tolerance protocols, such as message logging and parallel recovery.

This work is part of a research theme in our group: using adaptive runtime control to deal with the challenges presented by sophisticated applications and complexities of hardware. The Parallel Programming Laboratory has developed Charm++ for the past 20 years as a production quality parallel programming language, used in many CSE applications, including the Gordon Bell-winning biomolecular simulation program NAMD.

Author Biography:

Osman Sarood is a final year PhD student in the UIUC Computer Science department. His research is focused on performance optimization under thermal and power constraints.

Esteban Meneses is a Research Assistant Professor working in the Center for Simulation and Modeling at the University of Pittsburgh. His research is focused on load balancing and fault tolerance techniques for large-scale parallel applications. He holds a PhD degree in Computer Science from UIUC.

Laxmikant Kale received his PhD in computer science from State University of New York, Stony Brook, in 1985. He joined the Computer Science faculty of UIUC as an Assistant Professor in 1985, where he is currently employed as a full Professor. His research spans parallel computing, including parallel programming abstractions, scalability, automatic load balancing, communication optimizations, and fault tolerance. He has collaboratively developed several scalable CSE applications.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles. The Read more…

By Staff

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This