Building Parallel Code with Hybrid Fortran

By Tiffany Trader

July 31, 2014

Over at the Typhoon Computing blog, Michel Müller addresses a topic that is top of mind to many HPC programmers: porting code to accelerators.

Fortran programmers porting their code to GPGPUs (general purpose graphics processing units) have a new tool at their disposal, called Hybrid Fortran. Müller shows how this open source framework can enhance portability without sacrificing performance and maintainability.

From the blog (editor’s note: the site was down at the time of publication):

Say, you are on the onset of programming a HPC application. No problem, right? You know how the underlying machine works in terms of memory architecture and ALUs. (Or not? Well, that’s no problem either, the compilers have become so good I’m hearing, they will surely figure it out). You know what numeric approximation will be used to map your problem most efficiently. You know all about Roofline performance modelling, such that you can verify whether your algorithm performs on the hardware the way you’ve expected. You know what you’re supposed to do when you encounter data parallelism. So – let’s sit down and do it!

But wait!

You’re hearing about your organisation ordering a new cluster. In order to get closer to Exascale, this cluster will sport these fancy new accelerators. So all new HPC software projects should evaluate, if and how they can make use of coprocessors. You start reading yourself into the accelerator landscape. OpenCL, CUDA, OpenACC, OpenMP, ArrayFire, Tesla, Intel MIC, Parallela… Your head starts getting dizzy from all this stuff – all these hardware and software tools have lots of overlap, but also significant differences. Especially, they’re very different from x86 CPU architecture. Why is that?

It essentially comes down to the fact that in 2005, the free lunch was over.

By free lunch, Müller is of course referring to the ramping down of Moore’s law. When processor clock rates topped out, chipmakers began cramming multiple cores on a chip, and the multicore era was born. This puts the burden on the programmer to harness this parallelism. But as long as you have to do all that multithreaded implementation, why not get the most out of it, asks Müller, or as he puts it: “Why care about six or eight threads if we can have thousands?”

From here Müller goes through a step by step process of the other potential roadblocks, such as applications that are limited by memory bandwidth, the slow PCI Express bus, and the temptation to let scientists use the old (non-accelerated) version of your code on existing CPU-only machines.

This is all leading up to the ultimate dilemma: what if increased portability comes at the expense of performance and maintainability?

For codes written in Fortran, there is hope in the form of an open source Fortran directive called Hybrid Fortran. The code’s github page explains it as “a way for you to keep writing your Fortran code like you’re used to – only now with GPGPU support.”

With this machine-driven solution, a Python-based preprocessor takes care of the necessary transformations at compile-time, so there is no runtime overhead. It parses annotations together with your Fortran code structure, declarations, accessors and procedure calls, and then writes separate versions of your code – one for CPU with OpenMP parallelization and one for GPU with CUDA Fortran.

The programmer only needs to add two things:

(1) Where is the code to be parallelized? (Can be specified for CPU and GPU separately.)
(2) What symbols need to be transformed in different dimensions?

Müller charts the performance differences of this approach below:

Hybrid Fortran Speedup Examples

[1] If available, comparing to reference C version, otherwise comparing to Hybrid Fortran CPU implementation. Kepler K20x has been used as GPU, Westmere Xeon X5670 has been used as CPU (TSUBAME 2.5). All results measured in double precision. The CPU cores have been limited to one socket using thread affinity ‘compact’ with 12 logical threads. For CPU, Intel compilers ifort / icc with ‘-fast’ setting have been used. For GPU, PGI compiler with ‘-fast’ setting and CUDA compute capability 3.x has been used. All GPU results include the memory copy time from host to device.

Müller didn’t just stumble upon this solution, he is the primary developer of the codebase. At the Tokyo Institute of Technology, Müller ported the Physical Core of Japan’s national next generation weather prediction model to GPGPU. He ran into many of the problems he presents in this blog, and solving these issues led to the development of Hybrid Fortran. Müller currently works at the Tokyo Institute of Technology, where he is planning to port the internationally used open source weather model WRF to Hybrid Fortran.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This