Building Parallel Code with Hybrid Fortran

By Tiffany Trader

July 31, 2014

Over at the Typhoon Computing blog, Michel Müller addresses a topic that is top of mind to many HPC programmers: porting code to accelerators.

Fortran programmers porting their code to GPGPUs (general purpose graphics processing units) have a new tool at their disposal, called Hybrid Fortran. Müller shows how this open source framework can enhance portability without sacrificing performance and maintainability.

From the blog (editor’s note: the site was down at the time of publication):

Say, you are on the onset of programming a HPC application. No problem, right? You know how the underlying machine works in terms of memory architecture and ALUs. (Or not? Well, that’s no problem either, the compilers have become so good I’m hearing, they will surely figure it out). You know what numeric approximation will be used to map your problem most efficiently. You know all about Roofline performance modelling, such that you can verify whether your algorithm performs on the hardware the way you’ve expected. You know what you’re supposed to do when you encounter data parallelism. So – let’s sit down and do it!

But wait!

You’re hearing about your organisation ordering a new cluster. In order to get closer to Exascale, this cluster will sport these fancy new accelerators. So all new HPC software projects should evaluate, if and how they can make use of coprocessors. You start reading yourself into the accelerator landscape. OpenCL, CUDA, OpenACC, OpenMP, ArrayFire, Tesla, Intel MIC, Parallela… Your head starts getting dizzy from all this stuff – all these hardware and software tools have lots of overlap, but also significant differences. Especially, they’re very different from x86 CPU architecture. Why is that?

It essentially comes down to the fact that in 2005, the free lunch was over.

By free lunch, Müller is of course referring to the ramping down of Moore’s law. When processor clock rates topped out, chipmakers began cramming multiple cores on a chip, and the multicore era was born. This puts the burden on the programmer to harness this parallelism. But as long as you have to do all that multithreaded implementation, why not get the most out of it, asks Müller, or as he puts it: “Why care about six or eight threads if we can have thousands?”

From here Müller goes through a step by step process of the other potential roadblocks, such as applications that are limited by memory bandwidth, the slow PCI Express bus, and the temptation to let scientists use the old (non-accelerated) version of your code on existing CPU-only machines.

This is all leading up to the ultimate dilemma: what if increased portability comes at the expense of performance and maintainability?

For codes written in Fortran, there is hope in the form of an open source Fortran directive called Hybrid Fortran. The code’s github page explains it as “a way for you to keep writing your Fortran code like you’re used to – only now with GPGPU support.”

With this machine-driven solution, a Python-based preprocessor takes care of the necessary transformations at compile-time, so there is no runtime overhead. It parses annotations together with your Fortran code structure, declarations, accessors and procedure calls, and then writes separate versions of your code – one for CPU with OpenMP parallelization and one for GPU with CUDA Fortran.

The programmer only needs to add two things:

(1) Where is the code to be parallelized? (Can be specified for CPU and GPU separately.)
(2) What symbols need to be transformed in different dimensions?

Müller charts the performance differences of this approach below:

Hybrid Fortran Speedup Examples

[1] If available, comparing to reference C version, otherwise comparing to Hybrid Fortran CPU implementation. Kepler K20x has been used as GPU, Westmere Xeon X5670 has been used as CPU (TSUBAME 2.5). All results measured in double precision. The CPU cores have been limited to one socket using thread affinity ‘compact’ with 12 logical threads. For CPU, Intel compilers ifort / icc with ‘-fast’ setting have been used. For GPU, PGI compiler with ‘-fast’ setting and CUDA compute capability 3.x has been used. All GPU results include the memory copy time from host to device.

Müller didn’t just stumble upon this solution, he is the primary developer of the codebase. At the Tokyo Institute of Technology, Müller ported the Physical Core of Japan’s national next generation weather prediction model to GPGPU. He ran into many of the problems he presents in this blog, and solving these issues led to the development of Hybrid Fortran. Müller currently works at the Tokyo Institute of Technology, where he is planning to port the internationally used open source weather model WRF to Hybrid Fortran.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This