Austrian HPC Consortium Meets Demanding Inter-node Communication Challenge with Intel True Scale Fabric

By Dr. Ernst J. Haunschmid

August 6, 2014

The Vienna Scientific Cluster (VSC) refers to a collaboration of high-performance computing resources designed to support a consortium of multiple institutions in Austria consisting of the University of Vienna (UNVIE), the Vienna University of Technology (TUVIE), the University of Natural Resources and Applied Life Sciences Vienna (BOKU), the Graz University of Technology (TU Graz), and several universities in Austria’s southern provinces (University of Graz, University of Mining Leoben, University of Klagenfurt), and the University of Innsbruck.

VSC has three high performance clusters making up the computational hub of this consortium. VSC-1, built in 2009, was ranked #156 on the November 2009 Top500 list. VSC-2, completed in 2011, was recognized as #56 on the June 2011 Top500 list.  And the latest system, VSC-3, is currently being deployed, and sets high expectations in terms of performance and energy efficiency. The VSC-3 system configuration comprises 2,020 nodes based on Supermicro’s green mainboard X9DRD-iF, each fitted with 2 eight-core Intel Xeon E5-2650 v2 processors running at 2.6GHz.  The nodes are oil-cooled using Green Revolution Cooling’s Immersion cooling technology.

Access to the VSC is granted on the basis of peer-reviewed projects.

Researchers will use the VSC-3 cluster for a wide range of applications – from genomics to climate research, using commercial and open source scientific packages, including NAMD, MM5, HMMER and DMFT, among others. A substantial amount of the compute resources will be used for computational materials science, which has a very strong tradition in Austria.  Two of the most important and widely used codes in this area were developed in Vienna, the WIEN2k package and the Vienna Ab-initio Simulation Package (VASP), which is used for performing ab initio electronic structure calculations and quantum mechanical molecular dynamics. Designing VSC-3 required carefully balancing compute performance, memory bandwidth, a strong communication backbone, and other factors, including an ability to manage highly parallel workloads.

Due to the very high inter-node communication demands, the interconnect system of VSC-3 is based on Intel’s Truescale QDR-80 design which is a very attractive fabric solution.  The True Scale QDR-80 design provides an architecture that addresses the consortium’s needs in terms of message rates, latency, resiliency and scalability.

Prior to the VSC-3 selection, VSC benchmarked several communication fabric technologies, including Intel True Scale QDR and Intel True Scale QDR-80, Mellanox FDR, and technologies from Connect IB. The VSC selection committee had experience with Qlogic DDR HCAs and Qlogic QDR switches on VSC-1 and with Mellanox ConnectX2 QDR HCAs and QDR switches on VSC-2.

Scalability was a key concern because of the consortium’s experience with previous clusters. In its first year, some codes exhibited scalability challenges on VSC-2.  Unfortunately, these challenges particularly concerned the two most heavily used codes VASP and WIEN2k.

The team determined that for larger numbers of MPI processes (500-4000), the message rate was the limiting factor. Data showed that the Mellanox ConnectX2 technology on VSC-2 had a much lower message rate on the Ohio State University (OSU) benchmarks at 4-5 million messages/sec with 16 cores per node, versus 16 million messages/sec with 8 cores per node on VSC-1 and its Qlogic fabric. While scalability could be improved by software optimization, in particular using the Eigenvalue soLvers for Petaflop Applications (ELPA) library, the message rate is still the bottleneck limiting the number of nodes that can be used in a job on VSC-2 and still achieve reasonable speedup.

In running the benchmarks for VSC-3, using VSC’s main codes, neither Mellanox FDR or Connect IB* exhibited any advantages over a dual-rail Intel True Scale Fabric QDR80. In some cases, even single-rail Intel True Scale Fabric QDR showed better performance than FDR.

The experience gained from these benchmarks and from the VSC-2 performance data was used in formulating the criteria and requirements in the call for tender for VSC-3. While vendors were free to choose network technology as well as topology, the stringent performance requirements, in particular concerning the message rate (2.5 million messages per second and processor core) led the winning bidder, ClusterVision, to select Intel True Scale Fabric QDR80 for VSC-3.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Debuts Turing Architecture, Focusing on Real-Time Ray Tracing

August 16, 2018

From the SIGGRAPH professional graphics conference in Vancouver this week, Nvidia CEO Jensen Huang unveiled Turing, the company's next-gen GPU platform that introduces new RT Cores to accelerate ray tracing and new Tenso Read more…

By Tiffany Trader

HPC Coding: The Power of L(o)osing Control

August 16, 2018

Exascale roadmaps, exascale projects and exascale lobbyists ask, on-again-off-again, for a fundamental rewrite of major code building blocks. Otherwise, so they claim, codes will not scale up. Naturally, some exascale pr Read more…

By Tobias Weinzierl

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum technology used. One idea is to mitigate noisiness and perh Read more…

By John Russell

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Super Problem Solving

You might think that tackling the world’s toughest problems is a job only for superheroes, but at special places such as the Oak Ridge National Laboratory, supercomputers are the real heroes. Read more…

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak) supercomputer that will be used to advance early-stage R&a Read more…

By Tiffany Trader

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum Read more…

By John Russell

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

SLATE Update: Making Math Libraries Exascale-ready

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remain Read more…

By John Russell

Summertime in Washington: Some Unexpected Advanced Computing News

August 8, 2018

Summertime in Washington DC is known for its heat and humidity. That is why most people get away to either the mountains or the seashore and things slow down. H Read more…

By Alex R. Larzelere

NSF Invests $15 Million in Quantum STAQ

August 7, 2018

Quantum computing development is in full ascent as global backers aim to transcend the limitations of classical computing by leveraging the magical-seeming prop Read more…

By Tiffany Trader

By the Numbers: Cray Would Like Exascale to Be the Icing on the Cake

August 1, 2018

On its earnings call held for investors yesterday, Cray gave an accounting for its latest quarterly financials, offered future guidance and provided an update o Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This