Adapting Algorithms to Modern Hybrid Architectures

By Tiffany Trader

August 13, 2014

Technology, like other facets of life, commonly experiences cycles of rapid change followed by periods of relative stability. Computing has entered a stage of increased architectural diversity, as evidenced by the rise of accelerators, coprocessors, and other alternatives, like ARM processors. An international team of researchers explores how these various supercomputing architectures perform on parallelized turbulent flow problems.

In their paper “Direct Numerical Simulation of Turbulent Flows with Parallel Algorithms for Various Computing Architectures,” the authors describe the process of creating efficient parallel algorithms for large-scale simulations of turbulent flows and comparing their performance on AMD, NVIDIA and Intel Xeon Phi parts. They also introduce a new series of direct numerical simulations of incompressible turbulent flows with heat transfer performed with the newly-developed algorithms.

The authors classify modern supercomputers into three categories:

1. Classical ones that run on computing power of central processing units (CPU)
2. Hybrid machines with CPUs and graphics processing units (GPU)
3. Hybrid machines with CPUs and Intel Xeon Phi accelerators of many integrated core (MIC) architecture.

To optimize performance, algorithms need to be customized for each system type.

“The first type, the basic one, requires highly scalable parallel algorithms that can run on thousands of cores,” the authors state. “It also needs efficient shared-memory parallelization with large number of threads to engage modern multi-core nodes: two 12-core Intel Xeon CPUs with Hyper Threading (HT) can execute 48 parallel threads on a dual-CPU node. In addition it needs efficient vectorization since AVX extension operates with vectors of 4 doubles. The second type requires adaptation of algorithms to the streaming processing which is a simplified form of parallel processing related with SIMD (single instruction multiple data) model. This can be a challenge itself. The third type requires much more deep multi-threaded parallelism and vectorization than the first type.”

There is also a fourth type, ARM-based architectures, which like other hybrid types, involve a lot of attention to optimize memory access and load balancing between the CPU and accelerators. However, the main focus of this paper is on GPGPUs from NVIDIA and AMD and on the Intel Phi coprocessor.

The team take a multilevel approach that combines different parallel models. They explain: “MPI is used on the first level within the distributed memory model to couple computing nodes of a supercomputer. On the second level OpenMP is used to engage multi-core CPUs and/or Intel Xeon Phi accelerators. The third level exploits the computing potential of massively-parallel accelerators.”

OpenMP and OpenCL-based extensions were developed to exploit the computing potential of modern hybrid machines. In adapting the computational algorithms to different accelerator architectures, the group came across some interesting findings regarding performance.

WCCM Mesh Figure 3
Figure 3: Comparison of performance on a mesh with 472114 cells (flow around a sphere) for different devices using a 1st order finite-volume scheme for unstructured meshes

WCCM Mesh Figure 4
Figure 4: Comparison of performance on a mesh with 679339 cells (flow around a sphere) for different devices using a 2nd order polynomial-based finite-volume scheme for unstructured meshes

Looking at figure 3 and 4 (above) the team stated “it can be noted that for the 1st order scheme (Figure 3) NVIDIA GTX TITAN outperforms AMD 7970 while for the 2nd order polynomial-based scheme which requires much more resources (registers and shared memory usage) AMD one significantly outperforms NVIDIA one. This indicates the insufficiency of register and local memory of NVIDIA architecture that prevents from achieving high occupancy of the device and reduces efficiency.”

Also in Figure 4, it can be seen that the Intel Xeon Phi architecture is less performant than the various GPUs. Although this could be due to the OpenCL implementation, an OpenMP implementations resulted in similar behavior, providing only a 10-20 percent speedup over an 8-core Intel Xeon E5-2690 CPU.

“So the common statement that Intel Xeon Phi is much easier to use than GPU because it can handle the same CPU code is an illusion,” they conclude. “The computing power of this kind of accelerator is much more difficult to get.”

Structured and unstructured mesh algorithms modified for significantly multithreaded OpenMP parallelization demonstrated high internal speedups: up to 200 times faster on Intel Xeon Phi compared to a sequential execution on the same accelerator. However, net performance was not much higher than an 8-core CPU. Surprised by this result, the team speculates it could be related to insufficient memory latency hiding mechanisms that are based on 4-thread hyper threading. A GPU, they note, can have tens of threads switching for latency hiding. They add that poor cache performance could also be a contributing factor.

The paper serves as another reminder that system architectures must be assessed in the context of a specific workloads. For the OpenCL kernels of the algorithm on unstructured meshes, “the different GPUs considered substantially outperform Intel Xeon Phi accelerator,” the team concludes, adding, “the AMD GPU tends to be more efficient than NVIDIA on heavy computing kernels.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Bill Gropp on ‘Different Approaches to AI’

November 6, 2024

Around this same time last year, I expounded on what the “Future of AI” may entail. A lot has happened in the 12 months since then, including new approaches, new trends and, yes, new complications. A lot of the ne Read more…

Google Cloud Sporting a New Look in HPC and AI Hardware

November 5, 2024

It's raining hardware at Google Cloud, with the company making major upgrades in advance of bringing Nvidia's Blackwell GPUs into its fold next year. The upgrades announced in late October include a preview of its new Read more…

Go (Mountain) West, Quantum Workers! CU, CUbit, and Elevate Quantum Issue Workforce Roadmap

November 5, 2024

Last week the University of Colorado (Boulder), the CUbit Quantum Initiative, and the Elevate Quantum consortium released workforce roadmap for educating and building a quantum workforce. “This roadmap provides a foun Read more…

Collaboration Speeds Complex Chemical Modeling

November 4, 2024

A recent collaboration among researchers from HUN-REN Wigner Research Centre for Physics in Hungary and the Department of Energy's Pacific Northwest National Laboratory (PNNL), along with industry collaborators SandboxAQ Read more…

High-Performance Storage for AI and Analytics Panel

October 31, 2024

When storage is mentioned in an AI or Big Data analytics context, it is assumed to be a high-performance system. In practice, it may not be, and the user eventually learns about scaleable storage as the amounts of data g Read more…

Microsoft Azure & AMD Solution Channel

Join Microsoft Azure and AMD at SC24

Atlanta, Georgia is the place to be this fall as the high-performance computing (HPC) community convenes for Supercomputing 2024. SC24 will bring together an unparalleled mix of scientists, engineers, researchers, educators, programmers, and developers for a week of learning and sharing. Read more…

White House Mulls Expanding AI Chip Export Bans Beyond China

October 31, 2024

The Biden administration is reportedly considering capping sales of advanced artificial intelligence (AI) chips from US-based manufacturers like AMD and Nvidia to certain countries, including those in the Middle East. � Read more…

Bill Gropp on ‘Different Approaches to AI’

November 6, 2024

Around this same time last year, I expounded on what the “Future of AI” may entail. A lot has happened in the 12 months since then, including new approaches Read more…

Shutterstock 1179408610

Google Cloud Sporting a New Look in HPC and AI Hardware

November 5, 2024

It's raining hardware at Google Cloud, with the company making major upgrades in advance of bringing Nvidia's Blackwell GPUs into its fold next year. The upg Read more…

Go (Mountain) West, Quantum Workers! CU, CUbit, and Elevate Quantum Issue Workforce Roadmap

November 5, 2024

Last week the University of Colorado (Boulder), the CUbit Quantum Initiative, and the Elevate Quantum consortium released workforce roadmap for educating and bu Read more…

Collaboration Speeds Complex Chemical Modeling

November 4, 2024

A recent collaboration among researchers from HUN-REN Wigner Research Centre for Physics in Hungary and the Department of Energy's Pacific Northwest National La Read more…

High-Performance Storage for AI and Analytics Panel

October 31, 2024

When storage is mentioned in an AI or Big Data analytics context, it is assumed to be a high-performance system. In practice, it may not be, and the user eventu Read more…

Shutterstock_556401859

Role Reversal: Google Teases Nvidia’s Blackwell as It Softens TPU Rivalry

October 30, 2024

Customers now have access to Google's homegrown hardware -- its Axion CPU and latest Trillium TPU -- in its Cloud service.  At the same time, Google gave custo Read more…

AI Has a Data Problem, Appen Report Says

October 30, 2024

AI may be a priority at American companies, but the difficulty in managing data and obtaining high quality data to train AI models is becoming a bigger hurdle t Read more…

Report from HALO Details Issues Facing HPC-AI Industry

October 28, 2024

Intersect360 Research has released a comprehensive new report concerning the challenges facing the combined fields of high-performance computing (HPC) and artif Read more…

Shutterstock_2176157037

Intel’s Falcon Shores Future Looks Bleak as It Concedes AI Training to GPU Rivals

September 17, 2024

Intel's Falcon Shores future looks bleak as it concedes AI training to GPU rivals On Monday, Intel sent a letter to employees detailing its comeback plan after Read more…

Granite Rapids HPC Benchmarks: I’m Thinking Intel Is Back (Updated)

September 25, 2024

Waiting is the hardest part. In the fall of 2023, HPCwire wrote about the new diverging Xeon processor strategy from Intel. Instead of a on-size-fits all approa Read more…

Ansys Fluent® Adds AMD Instinct™ MI200 and MI300 Acceleration to Power CFD Simulations

September 23, 2024

Ansys Fluent® is well-known in the commercial computational fluid dynamics (CFD) space and is praised for its versatility as a general-purpose solver. Its impr Read more…

xAI Colossus: The Elon Project

September 5, 2024

Elon Musk's xAI cluster, named Colossus (possibly after the 1970 movie about a massive computer that does not end well), has been brought online. Musk recently Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Leading Solution Providers

Contributors

IBM Develops New Quantum Benchmarking Tool — Benchpress

September 26, 2024

Benchmarking is an important topic in quantum computing. There’s consensus it’s needed but opinions vary widely on how to go about it. Last week, IBM introd Read more…

Intel Customizing Granite Rapids Server Chips for Nvidia GPUs

September 25, 2024

Intel is now customizing its latest Xeon 6 server chips for use with Nvidia's GPUs that dominate the AI landscape. The chipmaker's new Xeon 6 chips, also called Read more…

Zapata Computing, Early Quantum-AI Software Specialist, Ceases Operations

October 14, 2024

Zapata Computing, which was founded in 2017 as a Harvard spinout specializing in quantum software and later pivoted to an AI focus, is ceasing operations, accor Read more…

Quantum and AI: Navigating the Resource Challenge

September 18, 2024

Rapid advancements in quantum computing are bringing a new era of technological possibilities. However, as quantum technology progresses, there are growing conc Read more…

US Implements Controls on Quantum Computing and other Technologies

September 27, 2024

Yesterday the Commerce Department announced export controls on quantum computing technologies as well as new controls for advanced semiconductors and additive Read more…

Google’s DataGemma Tackles AI Hallucination

September 18, 2024

The rapid evolution of large language models (LLMs) has fueled significant advancement in AI, enabling these systems to analyze text, generate summaries, sugges Read more…

Microsoft, Quantinuum Use Hybrid Workflow to Simulate Catalyst

September 13, 2024

Microsoft and Quantinuum reported the ability to create 12 logical qubits on Quantinuum's H2 trapped ion system this week and also reported using two logical qu Read more…

On Paper, AMD’s New MI355X Makes MI325X Look Pedestrian

October 15, 2024

Advanced Micro Devices has detailed two new GPUs that unambiguously reinforce it as the only legitimate GPU alternative to Nvidia. AMD shared new facts on its n Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire