Adapting Algorithms to Modern Hybrid Architectures

By Tiffany Trader

August 13, 2014

Technology, like other facets of life, commonly experiences cycles of rapid change followed by periods of relative stability. Computing has entered a stage of increased architectural diversity, as evidenced by the rise of accelerators, coprocessors, and other alternatives, like ARM processors. An international team of researchers explores how these various supercomputing architectures perform on parallelized turbulent flow problems.

In their paper “Direct Numerical Simulation of Turbulent Flows with Parallel Algorithms for Various Computing Architectures,” the authors describe the process of creating efficient parallel algorithms for large-scale simulations of turbulent flows and comparing their performance on AMD, NVIDIA and Intel Xeon Phi parts. They also introduce a new series of direct numerical simulations of incompressible turbulent flows with heat transfer performed with the newly-developed algorithms.

The authors classify modern supercomputers into three categories:

1. Classical ones that run on computing power of central processing units (CPU)
2. Hybrid machines with CPUs and graphics processing units (GPU)
3. Hybrid machines with CPUs and Intel Xeon Phi accelerators of many integrated core (MIC) architecture.

To optimize performance, algorithms need to be customized for each system type.

“The first type, the basic one, requires highly scalable parallel algorithms that can run on thousands of cores,” the authors state. “It also needs efficient shared-memory parallelization with large number of threads to engage modern multi-core nodes: two 12-core Intel Xeon CPUs with Hyper Threading (HT) can execute 48 parallel threads on a dual-CPU node. In addition it needs efficient vectorization since AVX extension operates with vectors of 4 doubles. The second type requires adaptation of algorithms to the streaming processing which is a simplified form of parallel processing related with SIMD (single instruction multiple data) model. This can be a challenge itself. The third type requires much more deep multi-threaded parallelism and vectorization than the first type.”

There is also a fourth type, ARM-based architectures, which like other hybrid types, involve a lot of attention to optimize memory access and load balancing between the CPU and accelerators. However, the main focus of this paper is on GPGPUs from NVIDIA and AMD and on the Intel Phi coprocessor.

The team take a multilevel approach that combines different parallel models. They explain: “MPI is used on the first level within the distributed memory model to couple computing nodes of a supercomputer. On the second level OpenMP is used to engage multi-core CPUs and/or Intel Xeon Phi accelerators. The third level exploits the computing potential of massively-parallel accelerators.”

OpenMP and OpenCL-based extensions were developed to exploit the computing potential of modern hybrid machines. In adapting the computational algorithms to different accelerator architectures, the group came across some interesting findings regarding performance.

WCCM Mesh Figure 3
Figure 3: Comparison of performance on a mesh with 472114 cells (flow around a sphere) for different devices using a 1st order finite-volume scheme for unstructured meshes

WCCM Mesh Figure 4
Figure 4: Comparison of performance on a mesh with 679339 cells (flow around a sphere) for different devices using a 2nd order polynomial-based finite-volume scheme for unstructured meshes

Looking at figure 3 and 4 (above) the team stated “it can be noted that for the 1st order scheme (Figure 3) NVIDIA GTX TITAN outperforms AMD 7970 while for the 2nd order polynomial-based scheme which requires much more resources (registers and shared memory usage) AMD one significantly outperforms NVIDIA one. This indicates the insufficiency of register and local memory of NVIDIA architecture that prevents from achieving high occupancy of the device and reduces efficiency.”

Also in Figure 4, it can be seen that the Intel Xeon Phi architecture is less performant than the various GPUs. Although this could be due to the OpenCL implementation, an OpenMP implementations resulted in similar behavior, providing only a 10-20 percent speedup over an 8-core Intel Xeon E5-2690 CPU.

“So the common statement that Intel Xeon Phi is much easier to use than GPU because it can handle the same CPU code is an illusion,” they conclude. “The computing power of this kind of accelerator is much more difficult to get.”

Structured and unstructured mesh algorithms modified for significantly multithreaded OpenMP parallelization demonstrated high internal speedups: up to 200 times faster on Intel Xeon Phi compared to a sequential execution on the same accelerator. However, net performance was not much higher than an 8-core CPU. Surprised by this result, the team speculates it could be related to insufficient memory latency hiding mechanisms that are based on 4-thread hyper threading. A GPU, they note, can have tens of threads switching for latency hiding. They add that poor cache performance could also be a contributing factor.

The paper serves as another reminder that system architectures must be assessed in the context of a specific workloads. For the OpenCL kernels of the algorithm on unstructured meshes, “the different GPUs considered substantially outperform Intel Xeon Phi accelerator,” the team concludes, adding, “the AMD GPU tends to be more efficient than NVIDIA on heavy computing kernels.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Long Flights to Cluster Fights: Meet the Asian Student Cluster Teams

November 22, 2017

Five teams from Asia traveled thousands of miles to compete at the SC17 Student Cluster Competition in Denver. Our cameras were there to meet ‘em, greet ‘em, and grill ‘em about their clusters and how they’re doi Read more…

By Dan Olds

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open question. The latest geo-region to throw its hat in the quantum co Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshop Read more…

By Andrew Jones

HPE Extreme Performance Solutions

HPE Wins “Best HPC Server” for the Apollo 6000 Gen10 System

Hewlett Packard Enterprise (HPE) was nominated for 14 HPCwire Readers’ and Editors’ Choice Awards—including “Best High Performance Computing (HPC) Server Product or Technology” and “Top Supercomputing Achievement.” The HPE Apollo 6000 Gen10 was named “Best HPC Server” of 2017. Read more…

Turnaround Complete, HPE’s Whitman Departs

November 22, 2017

Having turned around the aircraft carrier the Silicon Valley icon had become, Meg Whitman is leaving the helm of a restructured Hewlett Packard. Her successor, technologist Antonio Neri will now guide what Whitman assert Read more…

By George Leopold

Long Flights to Cluster Fights: Meet the Asian Student Cluster Teams

November 22, 2017

Five teams from Asia traveled thousands of miles to compete at the SC17 Student Cluster Competition in Denver. Our cameras were there to meet ‘em, greet ‘em Read more…

By Dan Olds

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC Read more…

By Andrew Jones

SC Bids Farewell to Denver, Heads to Dallas for 30th Anniversary

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Share This