Adapting Algorithms to Modern Hybrid Architectures

By Tiffany Trader

August 13, 2014

Technology, like other facets of life, commonly experiences cycles of rapid change followed by periods of relative stability. Computing has entered a stage of increased architectural diversity, as evidenced by the rise of accelerators, coprocessors, and other alternatives, like ARM processors. An international team of researchers explores how these various supercomputing architectures perform on parallelized turbulent flow problems.

In their paper “Direct Numerical Simulation of Turbulent Flows with Parallel Algorithms for Various Computing Architectures,” the authors describe the process of creating efficient parallel algorithms for large-scale simulations of turbulent flows and comparing their performance on AMD, NVIDIA and Intel Xeon Phi parts. They also introduce a new series of direct numerical simulations of incompressible turbulent flows with heat transfer performed with the newly-developed algorithms.

The authors classify modern supercomputers into three categories:

1. Classical ones that run on computing power of central processing units (CPU)
2. Hybrid machines with CPUs and graphics processing units (GPU)
3. Hybrid machines with CPUs and Intel Xeon Phi accelerators of many integrated core (MIC) architecture.

To optimize performance, algorithms need to be customized for each system type.

“The first type, the basic one, requires highly scalable parallel algorithms that can run on thousands of cores,” the authors state. “It also needs efficient shared-memory parallelization with large number of threads to engage modern multi-core nodes: two 12-core Intel Xeon CPUs with Hyper Threading (HT) can execute 48 parallel threads on a dual-CPU node. In addition it needs efficient vectorization since AVX extension operates with vectors of 4 doubles. The second type requires adaptation of algorithms to the streaming processing which is a simplified form of parallel processing related with SIMD (single instruction multiple data) model. This can be a challenge itself. The third type requires much more deep multi-threaded parallelism and vectorization than the first type.”

There is also a fourth type, ARM-based architectures, which like other hybrid types, involve a lot of attention to optimize memory access and load balancing between the CPU and accelerators. However, the main focus of this paper is on GPGPUs from NVIDIA and AMD and on the Intel Phi coprocessor.

The team take a multilevel approach that combines different parallel models. They explain: “MPI is used on the first level within the distributed memory model to couple computing nodes of a supercomputer. On the second level OpenMP is used to engage multi-core CPUs and/or Intel Xeon Phi accelerators. The third level exploits the computing potential of massively-parallel accelerators.”

OpenMP and OpenCL-based extensions were developed to exploit the computing potential of modern hybrid machines. In adapting the computational algorithms to different accelerator architectures, the group came across some interesting findings regarding performance.

WCCM Mesh Figure 3
Figure 3: Comparison of performance on a mesh with 472114 cells (flow around a sphere) for different devices using a 1st order finite-volume scheme for unstructured meshes

WCCM Mesh Figure 4
Figure 4: Comparison of performance on a mesh with 679339 cells (flow around a sphere) for different devices using a 2nd order polynomial-based finite-volume scheme for unstructured meshes

Looking at figure 3 and 4 (above) the team stated “it can be noted that for the 1st order scheme (Figure 3) NVIDIA GTX TITAN outperforms AMD 7970 while for the 2nd order polynomial-based scheme which requires much more resources (registers and shared memory usage) AMD one significantly outperforms NVIDIA one. This indicates the insufficiency of register and local memory of NVIDIA architecture that prevents from achieving high occupancy of the device and reduces efficiency.”

Also in Figure 4, it can be seen that the Intel Xeon Phi architecture is less performant than the various GPUs. Although this could be due to the OpenCL implementation, an OpenMP implementations resulted in similar behavior, providing only a 10-20 percent speedup over an 8-core Intel Xeon E5-2690 CPU.

“So the common statement that Intel Xeon Phi is much easier to use than GPU because it can handle the same CPU code is an illusion,” they conclude. “The computing power of this kind of accelerator is much more difficult to get.”

Structured and unstructured mesh algorithms modified for significantly multithreaded OpenMP parallelization demonstrated high internal speedups: up to 200 times faster on Intel Xeon Phi compared to a sequential execution on the same accelerator. However, net performance was not much higher than an 8-core CPU. Surprised by this result, the team speculates it could be related to insufficient memory latency hiding mechanisms that are based on 4-thread hyper threading. A GPU, they note, can have tens of threads switching for latency hiding. They add that poor cache performance could also be a contributing factor.

The paper serves as another reminder that system architectures must be assessed in the context of a specific workloads. For the OpenCL kernels of the algorithm on unstructured meshes, “the different GPUs considered substantially outperform Intel Xeon Phi accelerator,” the team concludes, adding, “the AMD GPU tends to be more efficient than NVIDIA on heavy computing kernels.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This