XSEDE14 Workshop Wrestles with Reproducibility

By Faith Singer-Villalobos

August 19, 2014

Imagine that you are trying to create a new sauce for a special dish, or the perfect adhesive for a new aircraft, or you’re flying a helicopter looking for victims of a natural disaster — and you succeed at each of these. This is wonderful news for your dinner guests, or the company that will use the new adhesive, and especially for the victims of the natural disaster. But the question is — Could you do it again and get the same results? Or, did you just get lucky the first time?

At the XSEDE14 conference in Atlanta, a roomful of computational veterans from inside and outside the NSF Extreme Science and Engineering Discovery Environment (XSEDE) participated in a full-day workshop on the topic of reproducibility, and clearly, there is a lot at stake.

“There is a growing awareness in the computational research community that this question of ‘can we do it again’ is becoming important for us in new ways, and the stakes are high — computational research is helping to save lives, answering policy questions, and making an impact on the world,” said Doug James, an HPC researcher at the Texas Advanced Computing Center, in his opening remarks for the workshop.

People have been thinking about reproducibility for a long time – it is one thing to reproduce a small scale lab experiment, or a computation on your desktop, but it is an entirely different matter to reproduce something that the Hubble Space Telescope did over five years at the cost of hundreds of millions of dollars, for example.

So, what is reproducibility? One working definition might resemble this: the ability to repeat an experiment to the degree necessary to assess the correctness and importance of the results. Practices that promote reproducibility include anything that makes a researcher more organized, provides a better audit trail, allows a researcher to track source code, and to know what data sources were used.

Victoria Stodden of Columbia University, who led a roundtable on the topic of reproducibility in 2009 and an ICERM workshop on Reproducibility in Computational and Experimental Mathematics in 2012, gave the keynote address at the XSEDE14 workshop. She raised the issue of a credibility crisis.

“Reproducibility has hit the popular press over the last several months,” Stodden said, citing recent coverage by The Economist (October 2013) and editorials in Nature and Science. Issues around the importance of reproducibility were catalyzed by the clinical trials scandal at Duke University in computational genomics where mistakes in the research were uncovered in 2010 in The Cancer Letter.

“This really goes to the heart of how important reproducibility issues are, and how we need to reconstruct the pipeline of thinking, reasoning and observation that a scientist does, but for the computational aspects, too, where many of these decisions are being manifest.”

Stodden also touched on separate discussions going on regarding different aspects of reproducibility such as statistical reproducibility, which questions the research decisions about the statistics and data analysis, and empirical reproducibility, which focuses on the reporting standards for the physical experiment, but does not focus on the computational steps.

Everyone in the room agreed that computational research is now in a position where complexity and mission criticality take on new import, and the community needs to develop confidence in the results of that research. But what should our priorities be? Training? Better tools? New steps in proposals and submissions?

NCSA Director Ed Seidel shared his view that there are three levels where things have to happen to get momentum moving in right direction: 1) campus level; 2) national level; and 3) publisher level.

Seidel said that local campuses have to think about how they can begin to support local data services, not just repositories, so there is a local structure. “This is a policy issue that vice chancellors for research and provosts need to take seriously…and there are organizations in place like Internet2 and Educause that span the research universities across the country that can help,” Seidel said. “It’s important to frame it not just as data but more around reproducibility; scope the problem beyond data and the data infrastructure.”

In addition, Seidel cited the XSEDE initiative as being a good organization for aiding the reproducibility process. XSEDE was instrumental in starting the National Data Service Consortium, aimed at organizing a number of individual efforts for data services around tools to create data collections to get Digital Object Identifiers or ‘DOIs’ associated with them and to provide linking services to publishers. While typically thought of as pointers to data collections, DOIs can also attach to code. This is a crucial part of reproducibility.

Professional societies and journals can play a part as well. Many are starting to require links to the data referenced in a publication. But reproducible practices must start in the research group.

Victoria Stodden, Assistant Professor, Department of Statistics, Columbia University and Lorena Barba, Assistant Professor, California Institute of Technology
Victoria Stodden, Assistant Professor, Department of Statistics, Columbia University and Lorena Barba, Assistant Professor, California Institute of Technology

Lorena Barba of George Washington University and a leading advocate of reproducible science said, “Conducting research reproducibly doesn’t mean someone else will reproduce the results, but that you are doing it as if someone would do this. By providing full documentation, access to input data and source code, the community will have confidence in your results and will label them as reproducible even if they are, in fact, not reproduced.”

Many other people added to the conversation including Mark Fahey of the National Institute of Computational Sciences. According to Fahey, the centers need to step up and take some responsibility for providing documentation about how users build and run their codes. Fahey said, “Centers can automatically collect information for each code built and each run of the code, and this information can be made available back to the researcher for publications if desired. There are already two prototypes (ALTD and Lariat) at a variety of computing centers around the world that collect a good portion of this information, and a new improved infrastructure is in development called XALT funded by NSF.”

Recommendations

At the outset of the workshop, the group committed to a key deliverable: recommendations in the form of priorities and initiatives for organizations and communities.

“It’s been implicit that ‘Of course, this is what people do, system administrators and researchers check to ensure that codes gets the same results after systems upgrades and when porting to new platforms’ but reproducibility has never been a formal enterprise,” said Nancy Wilkins-Diehr of the San Diego Supercomputer Center, who summarized the workshop and helped facilitate suggestions for moving forward.

“This is a good time to do this. Computational science is a respected contributor of the scientific knowledge base. Important decisions are now based on simulation. While this is gratifying, it has very real implications for our responsibilities as well,” she said.

The participants intend to move forward with humility, however. “The vision for the recommendations is to honor the reality of a diverse set of viewpoints and include ideas that might be outside of the box,” James concluded. Everyone agrees that there is a need to promote confidence-building tools and methodologies that do not adversely affect performance.

Recommendations will be ready in the September 2014 timeframe — please refer to xsede.org/reproducibility to read them. In addition, you can send comments and suggestions to help@xsede.org. The Help Desk will send any and all inquiries to the XSEDE team working on this initiative.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This