XSEDE14 Workshop Wrestles with Reproducibility

By Faith Singer-Villalobos

August 19, 2014

Imagine that you are trying to create a new sauce for a special dish, or the perfect adhesive for a new aircraft, or you’re flying a helicopter looking for victims of a natural disaster — and you succeed at each of these. This is wonderful news for your dinner guests, or the company that will use the new adhesive, and especially for the victims of the natural disaster. But the question is — Could you do it again and get the same results? Or, did you just get lucky the first time?

At the XSEDE14 conference in Atlanta, a roomful of computational veterans from inside and outside the NSF Extreme Science and Engineering Discovery Environment (XSEDE) participated in a full-day workshop on the topic of reproducibility, and clearly, there is a lot at stake.

“There is a growing awareness in the computational research community that this question of ‘can we do it again’ is becoming important for us in new ways, and the stakes are high — computational research is helping to save lives, answering policy questions, and making an impact on the world,” said Doug James, an HPC researcher at the Texas Advanced Computing Center, in his opening remarks for the workshop.

People have been thinking about reproducibility for a long time – it is one thing to reproduce a small scale lab experiment, or a computation on your desktop, but it is an entirely different matter to reproduce something that the Hubble Space Telescope did over five years at the cost of hundreds of millions of dollars, for example.

So, what is reproducibility? One working definition might resemble this: the ability to repeat an experiment to the degree necessary to assess the correctness and importance of the results. Practices that promote reproducibility include anything that makes a researcher more organized, provides a better audit trail, allows a researcher to track source code, and to know what data sources were used.

Victoria Stodden of Columbia University, who led a roundtable on the topic of reproducibility in 2009 and an ICERM workshop on Reproducibility in Computational and Experimental Mathematics in 2012, gave the keynote address at the XSEDE14 workshop. She raised the issue of a credibility crisis.

“Reproducibility has hit the popular press over the last several months,” Stodden said, citing recent coverage by The Economist (October 2013) and editorials in Nature and Science. Issues around the importance of reproducibility were catalyzed by the clinical trials scandal at Duke University in computational genomics where mistakes in the research were uncovered in 2010 in The Cancer Letter.

“This really goes to the heart of how important reproducibility issues are, and how we need to reconstruct the pipeline of thinking, reasoning and observation that a scientist does, but for the computational aspects, too, where many of these decisions are being manifest.”

Stodden also touched on separate discussions going on regarding different aspects of reproducibility such as statistical reproducibility, which questions the research decisions about the statistics and data analysis, and empirical reproducibility, which focuses on the reporting standards for the physical experiment, but does not focus on the computational steps.

Everyone in the room agreed that computational research is now in a position where complexity and mission criticality take on new import, and the community needs to develop confidence in the results of that research. But what should our priorities be? Training? Better tools? New steps in proposals and submissions?

NCSA Director Ed Seidel shared his view that there are three levels where things have to happen to get momentum moving in right direction: 1) campus level; 2) national level; and 3) publisher level.

Seidel said that local campuses have to think about how they can begin to support local data services, not just repositories, so there is a local structure. “This is a policy issue that vice chancellors for research and provosts need to take seriously…and there are organizations in place like Internet2 and Educause that span the research universities across the country that can help,” Seidel said. “It’s important to frame it not just as data but more around reproducibility; scope the problem beyond data and the data infrastructure.”

In addition, Seidel cited the XSEDE initiative as being a good organization for aiding the reproducibility process. XSEDE was instrumental in starting the National Data Service Consortium, aimed at organizing a number of individual efforts for data services around tools to create data collections to get Digital Object Identifiers or ‘DOIs’ associated with them and to provide linking services to publishers. While typically thought of as pointers to data collections, DOIs can also attach to code. This is a crucial part of reproducibility.

Professional societies and journals can play a part as well. Many are starting to require links to the data referenced in a publication. But reproducible practices must start in the research group.

Victoria Stodden, Assistant Professor, Department of Statistics, Columbia University and Lorena Barba, Assistant Professor, California Institute of Technology
Victoria Stodden, Assistant Professor, Department of Statistics, Columbia University and Lorena Barba, Assistant Professor, California Institute of Technology

Lorena Barba of George Washington University and a leading advocate of reproducible science said, “Conducting research reproducibly doesn’t mean someone else will reproduce the results, but that you are doing it as if someone would do this. By providing full documentation, access to input data and source code, the community will have confidence in your results and will label them as reproducible even if they are, in fact, not reproduced.”

Many other people added to the conversation including Mark Fahey of the National Institute of Computational Sciences. According to Fahey, the centers need to step up and take some responsibility for providing documentation about how users build and run their codes. Fahey said, “Centers can automatically collect information for each code built and each run of the code, and this information can be made available back to the researcher for publications if desired. There are already two prototypes (ALTD and Lariat) at a variety of computing centers around the world that collect a good portion of this information, and a new improved infrastructure is in development called XALT funded by NSF.”

Recommendations

At the outset of the workshop, the group committed to a key deliverable: recommendations in the form of priorities and initiatives for organizations and communities.

“It’s been implicit that ‘Of course, this is what people do, system administrators and researchers check to ensure that codes gets the same results after systems upgrades and when porting to new platforms’ but reproducibility has never been a formal enterprise,” said Nancy Wilkins-Diehr of the San Diego Supercomputer Center, who summarized the workshop and helped facilitate suggestions for moving forward.

“This is a good time to do this. Computational science is a respected contributor of the scientific knowledge base. Important decisions are now based on simulation. While this is gratifying, it has very real implications for our responsibilities as well,” she said.

The participants intend to move forward with humility, however. “The vision for the recommendations is to honor the reality of a diverse set of viewpoints and include ideas that might be outside of the box,” James concluded. Everyone agrees that there is a need to promote confidence-building tools and methodologies that do not adversely affect performance.

Recommendations will be ready in the September 2014 timeframe — please refer to xsede.org/reproducibility to read them. In addition, you can send comments and suggestions to help@xsede.org. The Help Desk will send any and all inquiries to the XSEDE team working on this initiative.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This