XSEDE14 Workshop Wrestles with Reproducibility

By Faith Singer-Villalobos

August 19, 2014

Imagine that you are trying to create a new sauce for a special dish, or the perfect adhesive for a new aircraft, or you’re flying a helicopter looking for victims of a natural disaster — and you succeed at each of these. This is wonderful news for your dinner guests, or the company that will use the new adhesive, and especially for the victims of the natural disaster. But the question is — Could you do it again and get the same results? Or, did you just get lucky the first time?

At the XSEDE14 conference in Atlanta, a roomful of computational veterans from inside and outside the NSF Extreme Science and Engineering Discovery Environment (XSEDE) participated in a full-day workshop on the topic of reproducibility, and clearly, there is a lot at stake.

“There is a growing awareness in the computational research community that this question of ‘can we do it again’ is becoming important for us in new ways, and the stakes are high — computational research is helping to save lives, answering policy questions, and making an impact on the world,” said Doug James, an HPC researcher at the Texas Advanced Computing Center, in his opening remarks for the workshop.

People have been thinking about reproducibility for a long time – it is one thing to reproduce a small scale lab experiment, or a computation on your desktop, but it is an entirely different matter to reproduce something that the Hubble Space Telescope did over five years at the cost of hundreds of millions of dollars, for example.

So, what is reproducibility? One working definition might resemble this: the ability to repeat an experiment to the degree necessary to assess the correctness and importance of the results. Practices that promote reproducibility include anything that makes a researcher more organized, provides a better audit trail, allows a researcher to track source code, and to know what data sources were used.

Victoria Stodden of Columbia University, who led a roundtable on the topic of reproducibility in 2009 and an ICERM workshop on Reproducibility in Computational and Experimental Mathematics in 2012, gave the keynote address at the XSEDE14 workshop. She raised the issue of a credibility crisis.

“Reproducibility has hit the popular press over the last several months,” Stodden said, citing recent coverage by The Economist (October 2013) and editorials in Nature and Science. Issues around the importance of reproducibility were catalyzed by the clinical trials scandal at Duke University in computational genomics where mistakes in the research were uncovered in 2010 in The Cancer Letter.

“This really goes to the heart of how important reproducibility issues are, and how we need to reconstruct the pipeline of thinking, reasoning and observation that a scientist does, but for the computational aspects, too, where many of these decisions are being manifest.”

Stodden also touched on separate discussions going on regarding different aspects of reproducibility such as statistical reproducibility, which questions the research decisions about the statistics and data analysis, and empirical reproducibility, which focuses on the reporting standards for the physical experiment, but does not focus on the computational steps.

Everyone in the room agreed that computational research is now in a position where complexity and mission criticality take on new import, and the community needs to develop confidence in the results of that research. But what should our priorities be? Training? Better tools? New steps in proposals and submissions?

NCSA Director Ed Seidel shared his view that there are three levels where things have to happen to get momentum moving in right direction: 1) campus level; 2) national level; and 3) publisher level.

Seidel said that local campuses have to think about how they can begin to support local data services, not just repositories, so there is a local structure. “This is a policy issue that vice chancellors for research and provosts need to take seriously…and there are organizations in place like Internet2 and Educause that span the research universities across the country that can help,” Seidel said. “It’s important to frame it not just as data but more around reproducibility; scope the problem beyond data and the data infrastructure.”

In addition, Seidel cited the XSEDE initiative as being a good organization for aiding the reproducibility process. XSEDE was instrumental in starting the National Data Service Consortium, aimed at organizing a number of individual efforts for data services around tools to create data collections to get Digital Object Identifiers or ‘DOIs’ associated with them and to provide linking services to publishers. While typically thought of as pointers to data collections, DOIs can also attach to code. This is a crucial part of reproducibility.

Professional societies and journals can play a part as well. Many are starting to require links to the data referenced in a publication. But reproducible practices must start in the research group.

Victoria Stodden, Assistant Professor, Department of Statistics, Columbia University and Lorena Barba, Assistant Professor, California Institute of Technology
Victoria Stodden, Assistant Professor, Department of Statistics, Columbia University and Lorena Barba, Assistant Professor, California Institute of Technology

Lorena Barba of George Washington University and a leading advocate of reproducible science said, “Conducting research reproducibly doesn’t mean someone else will reproduce the results, but that you are doing it as if someone would do this. By providing full documentation, access to input data and source code, the community will have confidence in your results and will label them as reproducible even if they are, in fact, not reproduced.”

Many other people added to the conversation including Mark Fahey of the National Institute of Computational Sciences. According to Fahey, the centers need to step up and take some responsibility for providing documentation about how users build and run their codes. Fahey said, “Centers can automatically collect information for each code built and each run of the code, and this information can be made available back to the researcher for publications if desired. There are already two prototypes (ALTD and Lariat) at a variety of computing centers around the world that collect a good portion of this information, and a new improved infrastructure is in development called XALT funded by NSF.”

Recommendations

At the outset of the workshop, the group committed to a key deliverable: recommendations in the form of priorities and initiatives for organizations and communities.

“It’s been implicit that ‘Of course, this is what people do, system administrators and researchers check to ensure that codes gets the same results after systems upgrades and when porting to new platforms’ but reproducibility has never been a formal enterprise,” said Nancy Wilkins-Diehr of the San Diego Supercomputer Center, who summarized the workshop and helped facilitate suggestions for moving forward.

“This is a good time to do this. Computational science is a respected contributor of the scientific knowledge base. Important decisions are now based on simulation. While this is gratifying, it has very real implications for our responsibilities as well,” she said.

The participants intend to move forward with humility, however. “The vision for the recommendations is to honor the reality of a diverse set of viewpoints and include ideas that might be outside of the box,” James concluded. Everyone agrees that there is a need to promote confidence-building tools and methodologies that do not adversely affect performance.

Recommendations will be ready in the September 2014 timeframe — please refer to xsede.org/reproducibility to read them. In addition, you can send comments and suggestions to [email protected]. The Help Desk will send any and all inquiries to the XSEDE team working on this initiative.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC’s Upgraded Ranch Data Storage System Debuts New Features, Exabyte Potential

May 22, 2019

There's a joke attributed to comedian Steven Wright that goes, "You can't have everything. Where would you put it?" Users of advanced computing can likely relate to this. The exponential growth of data poses a steep c Read more…

By Jorge Salazar, TACC

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often abused term: transparency. Another surprise: HPE apparently Read more…

By Doug Black and Tiffany Trader

BlueField SmartNIC Backs Transformation to Bare Metal Kubernetes

May 21, 2019

Hardware vendors are betting the transition to 5G wireless networks supporting myriad connected consumer and industrial devices also will accelerate the shift to heavy-duty bare-metal servers as a way to provision cloud- Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Smarter EDA: Leveraging New Technologies for Product Verification

There is perhaps no sector more competitive than the modern electronics industry. Macro-trends, including artificial intelligence, 5G, and the internet of things (IoT), continue to propel dramatic growth. Read more…

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. The news follows HPE’s acquisition nearly three years ago o Read more…

By Doug Black & Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

CCC Offers Draft 20-Year AI Roadmap; Seeks Comments

May 14, 2019

Artificial Intelligence in all its guises has captured much of the conversation in HPC and general computing today. The White House, DARPA, IARPA, and Departmen Read more…

By John Russell

Cascade Lake Shows Up to 84 Percent Gen-on-Gen Advantage on STAC Benchmarking

May 13, 2019

The Securities Technology Analysis Center (STAC) issued a report Friday comparing the performance of Intel's Cascade Lake processors with previous-gen Skylake u Read more…

By Tiffany Trader

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

ASC19: NTHU Returns to Glory

May 11, 2019

As many of you Student Cluster Competition fanatics know by now, Taiwan’s National Tsing Hua University (NTHU) won the gold medal at the recently concluded AS Read more…

By Dan Olds

Intel 7nm GPU on Roadmap for 2021, OneAPI Coming This Year

May 8, 2019

At Intel's investor meeting today in Santa Clara, Calif., the company filled in details of its roadmap and product launch plans and sought to allay concerns about delays of its 10nm chips. In laying out its 10nm and 7nm timelines, Intel revealed that its first 7nm product would be... Read more…

By Tiffany Trader

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This