Building the Universe Pixel by Pixel

By Kelen Tuttle

August 20, 2014

Recently, the Harvard-Smithsonian Center for Astrophysics unveiled an unprecedented simulation of the universe’s development. Called the Illustris project, the simulation depicts more than 13 billion years of cosmic evolution across a cube of the universe that’s 350-million-light-years on each side. The goal was to view the formation of galaxies and other large-scale structure we see around us today, to test our understanding of what makes up the universe – including dark matter and dark energy – as well as how those components interact. It was a massive undertaking, one that took more than 5 years to complete. But why was it important to conduct such a simulation?

To better understand the science and art of astrophysics visualizations, three experts came together in late July to discuss the processes the ways in which their work benefits both science and the public’s perception of science. The participants:

RALF KAEHLER – is a physicist and computer scientist by training who now runs the visualization facilities at the Kavli Institute for Particle Astrophysics and Cosmology, located at SLAC National Accelerator Laboratory and Stanford University.

STUART LEVY – is a research programmer and member of the National Center for Supercomputing Applications’ Advanced Visualization Lab team, which creates high-resolution data-driven scientific visualizations for public outreach.

DYLAN NELSON – is a graduate student at the Harvard-Smithsonian Center for Astrophysics and a member of the Illustris collaboration, which recently completed a large cosmological simulation of galaxy formation.

The following is an edited transcript of a roundtable discussion. The participants have been provided the opportunity to amend or edit their remarks.

THE KAVLI FOUNDATION: Dylan, youre a member of the Illustris project team, so let’s start with you. Illustris was a massive undertaking, one that took more than 5 years to complete. Why was it important to conduct this simulation?

DYLAN NELSON: This simulation tested our big-picture understanding of the universe’s evolution. We can’t just compare the observation of one galaxy; we need to compare whole populations of thousands or tens of thousands of galaxies, and the simulation lets us do this by creating a big volume of the universe. In visualizing this simulation, we found some unexpected features that in retrospect really shouldn’t have been unexpected at all. For example, when we made a movie showing the temperature of gas in the universe evolving over time, we saw that galaxies had a tendency to flicker rapidly. We traced this back to one of the three ways in which we let supermassive black holes input energy into the galaxies within which they reside. Although we expected that the energy would affect the temperature of the gas, we didn’t know how intermittent it would be, how it would create these flickers and bursts. That’s really something that we were surprised by, and something that made us rework our models a bit. 

TKF: Ralf, what types of insights are gained through the visualizations you create with scientists at the Kavli Institute for Particle Astrophysics and Cosmology? Do you also tend to find unexpected features?

RALF KAEHLER: What I often hear from scientists is that they gain intuition from watching the animations we create, intuition that’s hard to get from just looking at the raw numbers. They see how gas moves, how dark matter clumps on smaller scales and then merges and forms larger and larger clumps of dark matter. And it seems like this intuition is very important for a thorough understanding of the processes.

Another very important advantage visualizations offer is the ability to catch errors in the simulations. By just looking at the numbers, it can be easy to miss these errors. But when watching an animation they can become totally obvious. We can easily see if there’s some discontinuity in the data that shouldn’t be there and then you can investigate further if it’s a feature or an artifact or a bug. The software used to produce these simulations usually consists of hundred thousands or millions of lines of code. Codes of that size often contain bugs and visualizations can help to determine if there’s an error hidden within the code.

TKF: It sounds like visualizations are especially good for identifying issues with your assumptions or the underlying models. Stuart, would you agree with that?

STUART LEVY: I think that’s a really good point, and it’s something that people talk about when they’re thinking of doing a visualization. If you reduce things to a graph with some statistics on it, in choosing what the statistics should measure, you’re saying what the interesting things are. And the hope is that if you can present something visually, you might end up bringing in things that you didn’t expect to bring in.

To me, it also seems like visualizations are becoming more and more useful for looking at very large-scale phenomena. As in observational astrophysics, instead of spending a lot of time looking at modest numbers of individual objects, people are looking at huge numbers of objects.

DYLAN NELSON: I agree with that. Large simulations like Illustris are similar to big observational surveys. When you’re not looking at individual objects, you need sophisticated visualization techniques to pull out the interesting information. For instance, back when the kind of cosmological simulations we do today first started, people plotted a point for each dark matter particle. They learned lots of science from doing that. But these days, when the biggest dark matter simulations include a trillion particles, that’s not going to get you as far. You’re going to need more sophisticated visualization approaches – as well as machine learning techniques or other automated ways of finding interesting trends in the simulation. We’re working on that.

TKF: Even though all three of you create visualizations, your roles and your connections to the scientific questions driving the research are different. How does the process work for each of you? Who comes up with the scientific questions you seek to answer?

RALF KAEHLER:

For us, it’s often an interactive process. We sit together in front of the screen and analyze the data in real-time. I try to design a lot of the algorithms in a way that they produce visualizations pretty quickly, so that we can change parameters like the camera position or the color maps in real time and get an updated image in a fraction of a second. That way, we can explore the data together, focusing on regions of interest, zooming in and out, things like that. Other times, it’s more offline, where I’ll render something overnight and send the result to the scientists and let them have a look at that.

I would also say that while half of my work is for scientists, the other half is for outreach. Sometimes we create visualizations purely for outreach purposes, and sometimes we can use the same visualization for both science and outreach. In the latter case, the scientists first analyze the dataset and then we tweak it a little bit, spending more time with the camera path and the color scheme to make it look a little bit prettier before we use it for planetarium shows.

DYLAN NELSON: The process for me is a little different because my primary responsibility is science. It’s only a secondary responsibility that lets me create visualizations. I always say that when I create visualizations, it’s both for scientific exploration and for dissemination to the public. But I think in reality, in my research group we do those two things in completely different ways.

We need visualizations to understand what is going on in a simulation, to better understand our models and the physical processes we’re simulating. But those visualizations are not pretty; we do them as quickly as possible, and as soon as we have a useful science result, the effort on the visualization stops. On the other hand, when we’re doing a visualization for outreach, that’s really intended to make people say “Oh, wow, that’s really cool!” So there’s a lot more time spent past the point of scientific realization, polishing and making the visualization look visually impressive. 

STUART LEVY: My group really focuses on outreach. So we usually have an idea for a show first, then we’ll go and look for scientists who work in that area and can provide the simulation. They’ll also tell us what we should believe from their simulations and what we shouldn’t believe. Often they’ll be making simulations they know are representing some aspects of reality well and others less well. And so they’ll say something like, don’t pay attention to the temperature here, since we’re not including everything that could be heating things up. We’ll go back and forth both with the scientists and the people producing the show to create something that’s both interesting and scientifically correct.

That said, we do occasionally work with scientists on unanswered questions – though it’s not always in the realm of astrophysics. A few years ago, we were working with a simulation of a tornado. One of the things that the scientists were interested in learning was the origin of tornados. Most severe storms don’t create tornados, so what’s special about the subset of storms that do? They had an idea that we should be looking in the simulation for a feature that’s called a rear flank downdraft – a storm that’s flowing in a certain way. We were looking for this signature in the visualizations and just not finding it. But then one of the graduate students picked out this sort of rolling feature – a horizontal bunch of rolling air – and succeeded in convincing his senior professors that, in this simulation at least, it was that feature and not a rear flank downdraft that triggered the tornado. That was a surprising result, one made possible by the visualization.

TKF: What have been the big breakthroughs in visualization in the past five years? Are there new technologies or revelations that make possible all youve just described? 

STUART LEVY: Bigger disks! It seems a little mundane, but the ability to store huge amounts of data is really important. A couple of years ago, we got about four terabytes of data from a scientist. A few years earlier, that would have been an overwhelming amount, but today we could easily take on several of those. That makes a really big difference. The billion-dollar gaming industry has also been an incredible boon to us. It’s on the back of that industry that high performance graphics cards have been built. Fifteen years ago, the fastest graphics hardware cost the price of a house. In just a few years, that was superseded by hardware that you could get for a couple of thousand dollars. Now it’s come down to a few hundred dollars, and we’re able to use it routinely. If not for the gaming industry, we wouldn’t have all of the graphics processor power that we need.

RALF KAEHLER: I completely agree with Stuart here. The ever-evolving capabilities of graphics hardware are very important for this work. You can now realize interactive visualizations of datasets that were far out of the reach of standard desktop workstations five or ten years ago.

TKF: With all of that computing power, how much of the process is science, and how much of it is art? If the three of you were to visualize the same event, would you end up with similar results?

RALF KAEHLER: I would say that there’s a lot of creativity involved in the process. It might be comparable to taking a photograph of some object. You have all of this freedom of how to choose your camera position, lighting conditions, color filters and so on. Similarly, with the same numerical simulation, you can end up with millions of different images by changing around these variables. So it really depends on the audience you’re targeting, what features in the original dataset you want to highlight, and what story you want to get across. If different people work on visualizations for the same dataset, the results can be totally different.

One of our most recent visualizations was a collaboration with the Hayden Planetarium at the American Museum of Natural History in New York. It shows the role of dark matter in forming the larger structures in the universe. For this audience, we took the term dark matter a bit more literally than usual. If we had done this rendering for scientists, we would have represented higher dark matter densities in brighter colors. But studies have shown that often confuses the general public. So in this visualization, we actually turned it around and rendered the dark matter in darker colors and added some background light. That helped guide the audience and clarified what was dark matter and what was not.

STUART LEVY: I agree. I think we should look at visualization like mapmakers look at map making. A good mapmaker will be deliberate in what gets included in the map, but also in what gets left out. Visualizers think about their audience, as Ralf says, and the specific story they want to tell. And so even with the same audience in mind, you might set up the visualization very differently to tell different stories. For example, for one story you might want to show only what it’s possible for the human eye to see, and in others you might want to show the presence of something that wouldn’t be visible in any sort of radiation at all. That can help to get a point across.

TKF: It sounds like theres quite a bit of room for artistic choice. For outreach purposes, then, why is it important for the visualizations to be based on scientifically accurate data? Why are you creating them, rather than a movie house?

RALF KAEHLER: Using sophisticated numerical simulations ensures that the science is depicted correctly. Besides this, it’s hard to model a lot of the phenomena in astrophysics using the artistic tools that Hollywood movies employ. The phenomena are just too complex to draw by hand. I think more and more of these artistic tools are now starting to incorporate some sort of simplified simulation codes in order to model things like explosions, to make it look more realistic.

TKF: When you’ve created visualizations for a public outlet, have you ever sat in the audience and watched the public’s reaction? What’s that like?

DYLAN NELSON: It’s kind of amazing, to be honest, the amount of press and public interest that’s come out of the Illustris project. Actually, just yesterday I got a call from my father, who had been browsing the news on his phone and saw an image from Illustris on the front page of The New York Times website. This was a still image that we made just for the purposes of putting it on the website, and it’s probably appeared in a dozen newspapers so far. It’s great that there’s so much interest, and that the images are becoming almost iconic.

STUART LEVY: For me, it’s great to watch visualizations in planetarium domes. It’s the most wonderful thing to lie down in the middle of a planetarium – or even in an IMAX theater – and just look up. Having the audience completely surrounded by what they’re seeing can be really breathtaking.

RALF KAEHLER: I love it when visualizations are shown in planetariums, too. It just looks so impressive – much more impressive than looking at the visualizations on a flat monitor in my office. I’ve worked on visualizations that were shown in places like the American Museum of Natural History and the Morrison Planetarium at the California Academy of Sciences. These are great places to reach a lot of people in a nice, inspiring environment. Even though when I’m sitting in the audience it’s too dark to gauge other people’s reactions, sometimes we get emails from people who saw the planetarium shows and write how much they liked it. It’s really motivating, and shows that our time is being well invested.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

SC21’s Student Cluster Competition Winners Announced

November 19, 2021

SC21 may have been the first major supercomputing conference to return to in-person activities, but not everything returned to the live menu: the Student Cluster Competition – held virtually at ISC 2020, SC20 and ISC 2021 – was again held virtually at SC21. Nevertheless, Students@SC Chair Jay Lofstead took the physical stage at SC21 on Thursday to announce the... Read more…

MLPerf Issues HPC 1.0 Benchmark Results Featuring Impressive Systems (Think Fugaku)

November 19, 2021

Earlier this week MLCommons issued results from its latest MLPerf HPC training benchmarking exercise. Unlike other MLPerf benchmarks, which mostly measure the training and inference performance of systems that are availa Read more…

Gordon Bell Special Prize Goes to World-Shaping COVID Droplet Work

November 18, 2021

For the second (and, hopefully, final) year in a row, SC21 included a second major research award alongside the ACM 2021 Gordon Bell Prize: the Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research. Last year, the first iteration of this award went to simulations of the SARS-CoV-2 spike protein; this year, the prize went... Read more…

AWS Solution Channel

Royalty-free stock illustration ID: 1616974732

Using the Slurm REST API to integrate with distributed architectures on AWS

The Slurm Workload Manager by SchedMD is a popular HPC scheduler and is supported by AWS ParallelCluster, an elastic HPC cluster management service offered by AWS. Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

SC21’s Student Cluster Competition Winners Announced

November 19, 2021

SC21 may have been the first major supercomputing conference to return to in-person activities, but not everything returned to the live menu: the Student Cluster Competition – held virtually at ISC 2020, SC20 and ISC 2021 – was again held virtually at SC21. Nevertheless, Students@SC Chair Jay Lofstead took the physical stage at SC21 on Thursday to announce the... Read more…

MLPerf Issues HPC 1.0 Benchmark Results Featuring Impressive Systems (Think Fugaku)

November 19, 2021

Earlier this week MLCommons issued results from its latest MLPerf HPC training benchmarking exercise. Unlike other MLPerf benchmarks, which mostly measure the t Read more…

Gordon Bell Special Prize Goes to World-Shaping COVID Droplet Work

November 18, 2021

For the second (and, hopefully, final) year in a row, SC21 included a second major research award alongside the ACM 2021 Gordon Bell Prize: the Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research. Last year, the first iteration of this award went to simulations of the SARS-CoV-2 spike protein; this year, the prize went... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

SC21 Keynote: Internet Pioneer Vint Cerf on Shakespeare, Chatbots, and Being Human

November 17, 2021

Unlike the deep technical dives of many SC keynotes, Internet pioneer Vint Cerf steered clear of the trenches and took leisurely stroll through a range of human-machine interactions, touching on ML’s growing capabilities while noting potholes to be avoided if possible. Cerf, of course, is co-designer with Bob Kahn of the TCP/IP protocols and architecture of the internet. He’s heralded... Read more…

France’s Jean Zay Supercomputer Boosts AI, HPC Research with Influx of A100 80GB GPUs

November 17, 2021

Since coming online in the fall of 2019 in Paris, the Jean Zay supercomputer has been one of Europe’s most powerful supercomputers available to HPC and AI researchers. And now, through the addition of new Nvidia A100 80GB GPUs and other hardware, the Jean Zay will soon offer double the compute capacity it offers for AI and HPC research, according to GENCI... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire