HPC Task Force Publishes Recommendations

By Tiffany Trader

August 27, 2014

The Secretary of Energy Advisory Board (SEAB) Task Force on Next Generation High Performance Computing (HPC), established in December by the Secretary of Energy to review the mission and national capabilities related to next generation high performance computing, has released a “final version” draft report.

The Task Force was asked to examine the problems and opportunities that will drive the need for next generation high performance computing. The report addresses what will be required to execute a successful path to deliver next generation leading edge HPC, and makes recommendations regarding if and to what degree the government should be involved in facilitating this goal, and what specific role the DOE should take in such a program.

The Task Force’s findings and recommendations were framed by three broad considerations:

1. We recognize and recommend a “new” alignment between classical and data centric computing to develop a balanced computational ecosystem.
2. We recognize the DOE historical role and expertise in the science, technology, program management and partnering, and recognize its vital role across US Government (USG), including in the National Strategic Computing Initiative (NSCI).
3. We examine and make recommendations on exascale investment but also on nurturing the health of the overall high performance computing ecosystem, which includes investment in people, and in mathematics, computer science, software engineering, basic sciences, and materials science and engineering.

In the report’s executive summary, the authors describe how today’s machines have achieved performance in the tens of petaflops range largely by following the historical path of the last several decades, i.e., “taking advantage of Moore’s law progression to smaller /and faster CMOS computing elements, augmented by the highly parallel architectures that followed the vector processing change at the pre-teraflop generation.”

The draft report also points to the evolution of a more data-centric computing paradigm brought about by sensor networks, financial systems, scientific instruments, and simulations themselves.

“The need to extract useful information from this explosion of data becomes as important as sheer computational power,” the authors assert. “This has driven a much greater focus on data centric computing, linked to integer operations, as opposed to floating point operations. Indeed, computational problems and data centric problems are coming together in areas that range from energy, to climate modeling, to healthcare.

“This shift dictates the need for a balanced ecosystem for high performance computing with an undergirding infrastructure that supports both computationally-intensive and data centric computing.


In fact, the architecture of computing hardware is evolving, and this means that the elements of the backbone technology – including memory, data movement, and bandwidth – must progress together. As we move to the era of exascale computing, multiple technologies have to be developed in a complementary way, including hardware, middleware, and applications software.”

Among the report’s key findings is the undeniable importance of investing in exascale computing. The NNSA mission and basic science applications “demonstrate real need and real deliverables from a significant performance increase in classical high performance computing at several orders of magnitude beyond the tens of petaflop performance delivered by today’s leadership machines,” the authors write.

They add that current technology is only capable of one last “current” generation machine, to wit: “Optimization of current CMOS, highly parallel processing within the remaining limits of Moore’s law and Dennard scaling likely provides one last “generation” of conventional architecture at the 1-10 exascale performance level, within acceptable power budgets. Significant, but projectable technology and engineering developments are needed to reach this performance level.”

The report recommends five steps to carrying out its proposals. The first assertion is that the “DOE, through a program jointly established and managed by the NNSA and the Office of Science, should lead the program and investment to deliver the next class of leading edge machines by the middle of the next decade. These machines should be developed through a co-design process that balances classical computational speed and data centric memory and communications architectures to deliver performance at the 1-10 exaflop level, with addressable memory in the exabyte range.”

Achieving and maintaining a healthy exascale and beyond ecosystem will necessitate a DOE investment in the range of $100-$150 million per year, according to the draft report.

The SEAB Task Force is composed of SEAB members and independent experts from academia and industry. The full report includes a thorough justification for exascale computing investment, including a discussion of the new era of supercomputing, the rise of data-centric computing, implications for industry, and the need for balanced progress.

The report’s recommendations cover three spans of time: greater petascale, exascale, and beyond exascale. Greater petascale will straddle the next five years, characterized by systems in the many tens to hundreds of petaflops and requiring up to a combination of 5-10 petabytes of addressable and buffer memory and over one hundred petabytes of storage. The DOE-funded CORAL program is operating to satisfy these requirements in a data centric architectural context, with a focus on power efficiency, reliability and productive usability. The exascale time frame covers the following five to ten years. It is characterized by systems in the hundreds of petaflops to tens of exaflops, requiring tens of petabytes of memory and possibly an exabyte of storage. Programs that support this period are still in their formative stages and funding is just beginning to come to fruition. The final and most uncertain stage is “beyond exascale.” The successors to CMOS technology and current architectures that could facilitate a post-exascale computing era may already be under development or may come from an as-yet unknown path.

The Task Force was asked to deliver its report by June 2014 and to discuss its report and its conclusion at the June 2014 SEAB meeting.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This