HPC Task Force Publishes Recommendations

By Tiffany Trader

August 27, 2014

The Secretary of Energy Advisory Board (SEAB) Task Force on Next Generation High Performance Computing (HPC), established in December by the Secretary of Energy to review the mission and national capabilities related to next generation high performance computing, has released a “final version” draft report.

The Task Force was asked to examine the problems and opportunities that will drive the need for next generation high performance computing. The report addresses what will be required to execute a successful path to deliver next generation leading edge HPC, and makes recommendations regarding if and to what degree the government should be involved in facilitating this goal, and what specific role the DOE should take in such a program.

The Task Force’s findings and recommendations were framed by three broad considerations:

1. We recognize and recommend a “new” alignment between classical and data centric computing to develop a balanced computational ecosystem.
2. We recognize the DOE historical role and expertise in the science, technology, program management and partnering, and recognize its vital role across US Government (USG), including in the National Strategic Computing Initiative (NSCI).
3. We examine and make recommendations on exascale investment but also on nurturing the health of the overall high performance computing ecosystem, which includes investment in people, and in mathematics, computer science, software engineering, basic sciences, and materials science and engineering.

In the report’s executive summary, the authors describe how today’s machines have achieved performance in the tens of petaflops range largely by following the historical path of the last several decades, i.e., “taking advantage of Moore’s law progression to smaller /and faster CMOS computing elements, augmented by the highly parallel architectures that followed the vector processing change at the pre-teraflop generation.”

The draft report also points to the evolution of a more data-centric computing paradigm brought about by sensor networks, financial systems, scientific instruments, and simulations themselves.

“The need to extract useful information from this explosion of data becomes as important as sheer computational power,” the authors assert. “This has driven a much greater focus on data centric computing, linked to integer operations, as opposed to floating point operations. Indeed, computational problems and data centric problems are coming together in areas that range from energy, to climate modeling, to healthcare.

“This shift dictates the need for a balanced ecosystem for high performance computing with an undergirding infrastructure that supports both computationally-intensive and data centric computing.


In fact, the architecture of computing hardware is evolving, and this means that the elements of the backbone technology – including memory, data movement, and bandwidth – must progress together. As we move to the era of exascale computing, multiple technologies have to be developed in a complementary way, including hardware, middleware, and applications software.”

Among the report’s key findings is the undeniable importance of investing in exascale computing. The NNSA mission and basic science applications “demonstrate real need and real deliverables from a significant performance increase in classical high performance computing at several orders of magnitude beyond the tens of petaflop performance delivered by today’s leadership machines,” the authors write.

They add that current technology is only capable of one last “current” generation machine, to wit: “Optimization of current CMOS, highly parallel processing within the remaining limits of Moore’s law and Dennard scaling likely provides one last “generation” of conventional architecture at the 1-10 exascale performance level, within acceptable power budgets. Significant, but projectable technology and engineering developments are needed to reach this performance level.”

The report recommends five steps to carrying out its proposals. The first assertion is that the “DOE, through a program jointly established and managed by the NNSA and the Office of Science, should lead the program and investment to deliver the next class of leading edge machines by the middle of the next decade. These machines should be developed through a co-design process that balances classical computational speed and data centric memory and communications architectures to deliver performance at the 1-10 exaflop level, with addressable memory in the exabyte range.”

Achieving and maintaining a healthy exascale and beyond ecosystem will necessitate a DOE investment in the range of $100-$150 million per year, according to the draft report.

The SEAB Task Force is composed of SEAB members and independent experts from academia and industry. The full report includes a thorough justification for exascale computing investment, including a discussion of the new era of supercomputing, the rise of data-centric computing, implications for industry, and the need for balanced progress.

The report’s recommendations cover three spans of time: greater petascale, exascale, and beyond exascale. Greater petascale will straddle the next five years, characterized by systems in the many tens to hundreds of petaflops and requiring up to a combination of 5-10 petabytes of addressable and buffer memory and over one hundred petabytes of storage. The DOE-funded CORAL program is operating to satisfy these requirements in a data centric architectural context, with a focus on power efficiency, reliability and productive usability. The exascale time frame covers the following five to ten years. It is characterized by systems in the hundreds of petaflops to tens of exaflops, requiring tens of petabytes of memory and possibly an exabyte of storage. Programs that support this period are still in their formative stages and funding is just beginning to come to fruition. The final and most uncertain stage is “beyond exascale.” The successors to CMOS technology and current architectures that could facilitate a post-exascale computing era may already be under development or may come from an as-yet unknown path.

The Task Force was asked to deliver its report by June 2014 and to discuss its report and its conclusion at the June 2014 SEAB meeting.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Ohio Supercomputer Center Dedicates ‘Owens’ Cluster

March 29, 2017

In a dedication ceremony held earlier today (March 29), officials from Ohio Supercomputer Center (OSC) along with state representatives gathered to celebrate the launch of OSC’s newest cluster: Read more…

By Tiffany Trader

EU Ratchets up the Race to Exascale Computing

March 29, 2017

The race to expand HPC infrastructure, including exascale machines, to advance national and regional interests ratcheted up a notch yesterday with announcement that seven European countries – Read more…

By John Russell

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging the Power of Big Data to Improve Customer Satisfaction & Brand Loyalty

In the dynamic world of retail, retailers must find ways to recognize and effectively respond to shopping behaviors, patterns, and trends in order to succeed. Read more…

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This