DDN’s IME Software Scales I/O Performance on the Rocky Road to Exascale

August 28, 2014

Exascale, once just a gleam in the eyes of a few prescient computer scientists, is beginning to take shape. That arbitrary date of 2018 for a thousand-fold increase in computing power no longer seems far fetched. But as exascale comes into focus, some very specific roadblocks are being resolved and storage is one of them.

The storage problems facing tomorrow’s theoretical exascale systems are already surfacing in today’s massively parallel, heterogeneous, multicore HPC systems. The emergence of performance-intensive HPC applications in business, government and academia, demands a new storage and I/O paradigm.

Practical Problems

Scaling performance on traditional spinning disk storage is expensive and inefficient. In the conventional approach, the number of drive spindles is directly correlated with I/O delivery. Users are forced to buy lower capacity, more expensive drives to increase spindles without increasing capacity. The desired I/O may be achieved, but at a cost that includes: lost storage density; inability to realize the efficiencies of higher capacity HDDs; and all this results in more systems to house, power and manage.

Back in 1999, when VMware® launched the virtualization revolution by decoupling the physical server from the logical server, they created a new compute provisioning paradigm that forever changed the data center. VMware finally allowed users to run multiple jobs on a single virtualized system. This helped solve many of the problems on the compute side associated with idle capacity, inefficient use of servers and the negative economics of overprovisioning.

Enter IME

Much like the business and architectural transformation that resulted from VMware’s innovations, DataDirect Networks (DDN) has finally resolved the long standing challenges associated with the overprovisioning of storage by decoupling I/0 performance from capacity. The solution, know as the Infinite Memory Engine™ (IME), is a highly transactional, resilient and reliable “burst buffer cache” and I/O accelerator for HPC and Big Data applications.

Analysis of a Major HPC Production Storage SystemIME is composed of client software resident on compute nodes, and server software for the I/O servers that aggregate and virtualize disparate compute or I/O server resident SSDs. This creates a single pool of extremely low latency, high performance, non-volatile memory-based storage to become a new fast data tier.

Not only does IME intelligently decouple storage performance from spinning disk storage capacity, it also:

  • Significantly accelerates applications by moving I/O right next to compute resources to reduce latency, delivering 50% faster performance than all flash arrays
  • Greatly reduces cluster idle time through intelligent, forward looking I/O provisioning
  • Breaks down network bottlenecks for more efficient data center operation
  • Reduces power consumption, increases data center density and lowers system cost

Typical Big Data and HPC applications addressed by IME include analytics, financial services, scientific computing and research, life sciences/genomics, oil and gas, and many more.

IME for Unparalleled Data Center Efficiency

IME brings numerous benefits to the data center.

For example, IME:

  • Boosts data center efficiency by dramatically reducing hardware, power, floor space and the number of components to manage and maintain
  • Provides massive application acceleration by returning wasted processing cycles to compute that were previously managing storage activities or waiting for I/O from spinning disk, greatly increasing compute ROI
  • Is compute and storage hardware agnostic as this software-defined storage scales limitlessly and protects data via distributed erasure coding in this NVM fast data tier

With IME, DDN has addressed a storage problem that has been unresolved ever since the introduction of disk-based storage. IME allows data centers to run more complex simulations faster with less hardware.   Large datasets can be moved out of HDD storage and into memory quickly and efficiently. Then, data can be moved back to HDD storage once processing is complete much more efficiently with unique algorithms that align small and large writes into streams,, enabling users to implement the largest, economical HDDs to hold capacity. Workload performance is optimized to reduce time to insight and discovery. Cost savings of up to 80% can be realized while achieving infinite scalability and highly efficient I/O performance.

DDN’s IME solution transforms storage from a bottleneck to becoming a major contributor to a smoothly functioning IT infrastructure that supports the organization’s most ambitious HPC and big data and performance-intensive applications.

And looking to the future, IME has taken its place as one more step on enabling the road to exascale.

Contact Information

DataDirect Networks
www.ddn.com
+1-800-837-2298

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Do Cryptocurrencies Have a Part to Play in HPC?

February 22, 2018

It’s easy to be distracted by news from the US, China, and now the EU on the state of various exascale projects, but behind the vinyl-wrapped cabinets and well-groomed sales execs are an army of Excel-wielding PMO and Read more…

By Chris Downing

HOKUSAI’s BigWaterfall Cluster Extends RIKEN’s Supercomputing Performance

February 21, 2018

RIKEN, Japan’s largest comprehensive research institution, recently expanded the capacity and capabilities of its HOKUSAI supercomputer, a key resource managed by the institution’s Advanced Center for Computing and C Read more…

By Ken Strandberg

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

HPE Extreme Performance Solutions

Experience Memory & Storage Solutions that will Transform Your Data Performance

High performance computing (HPC) has revolutionized the way we harness insight, leading to a dramatic increase in both the size and complexity of HPC systems. Read more…

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HPE to provide the DoD High Performance Computing Modernizatio Read more…

By Tiffany Trader

HOKUSAI’s BigWaterfall Cluster Extends RIKEN’s Supercomputing Performance

February 21, 2018

RIKEN, Japan’s largest comprehensive research institution, recently expanded the capacity and capabilities of its HOKUSAI supercomputer, a key resource manage Read more…

By Ken Strandberg

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This