New Degrees of Parallelism, Old Programming Planes

By Nicole Hemsoth

August 28, 2014

Exploiting the capabilities of HPC hardware is now more a matter of pushing into deeper levels of parallelism versus adding more cores or overclocking. What this means is that the time is right for a revolution in programming. The question is whether that revolution should be one that torches the landscape or that handles things “diplomatically” with the existing infrastructure.

While some argue for a “rip and replace” approach to rethinking code for the new era of computational capability, others, including Intel’s Director of Software, James Reinders, are advocating approaches that blend the old and new—that preserve the order of existing programming models while still permitting major leaps ahead for parallelism.

To these ends, Reinders described the latest release of Intel’s Parallel Studio XE 2015 for us this week, pointing to the addition of new explicit vector programming capabilities as well as the many features inside OpenMP 4.0., which is a significant part of the new release.

It’s not difficult to imagine the arguments in favor of holding steady with a consistent programming model for a manycore world, but few expect that slope will be simple to scale. At the heart of Intel’s approach to meshing the old and new approaches are some key features inside OpenMP 4.0, which Reinders says still amount to “hidden charms” that haven’t been fully explored by the HPC world yet. More specifically, he notes that three key elements to exploiting new hardware capabilities—tasking, vectorization, and offload—are not just present in OpenMP 4.0, they work together in unison and represent a turning point in how we will view the possibilities of preserving programming models and bases for the future generation of codes.

“The question is, can we keep the challenges limited to scaling across cores and vectorization to evolve into this new era instead—can we make that set of challenges the programming problem to solve versus learning exotic languages or abandoning the strong code base we have?” Reinders asked. In answer to this, he pointed to some new work his team at Intel, as well as partners around the world, are doing to enhance this possibility via OpenMP 4.0. in addition to their other Intel-specific math libraries and tools.

The issue right now with OpenMP 4.0 isn’t that the capabilities to achieve the new parallelism/existing programming environment goals. It’s still a matter of knowledge, training, and actual examples that show how the three goals of tasking, vectorization, and offload are working inside the same box with this newest release. Reinders says that the most frequent questions he’s getting now revolve around what’s inside the standard in general—it’s still in a “kicking the tires” phase that he hopes the community can move past, especially in this era of 244-way parallelism potential with the Xeon Phi.

He says some specific examples of the hidden charms of OpenMP 4.0 are contained within the new Collapse directive, which essentially lets the compiler handle the tasking across the cores in addition to vectorization at the same time. In another scenario, it would be possible to do offload and have a loop that addresses tasking and vectorization. In other words, users are doing messy things out of necessity to manage these aspects of performance gains with individual approaches instead of potentially tackling all three of the problems at the same time. The benefit of this is profound, Reinders argued, but said it’s still lost in the overwhelming early experimentation phase many are working through now.

The main addition to the release is explicit vector programming, which Reinders says is of increasing importance. This is an important feature because vectorizing will offer some profound performance improvements for HPC code, which also adds to overall efficiency since it can compute faster with the CPU being set at a lower power state. “The question these days is, how do we start getting codes to take full advantage of vector instructions in modern instruction sets. Languages like C and Fortran weren’t written with this in mind, so there have been a lot of hacks to hint to the compiler to vectorize over the years that aren’t so dissimilar to those were doing to get more parallelism in the 80s and 90s.”

Now, instead of going back and forth with the compiler to get it to auto-vectorize, the goal is to extend the languages so they still look like C and Fortran and let the compiler know that you’re ready to vectorize a loop even if there are some problems embedded in the language itself. In OpenMP 4.0, this is achieved through Pragma OMP SIMD, which is designed to minimize code changes when vectorizing code. It can be used to vectorize loops that the compiler normally wouldn’t auto-vectorize without all the hacks. The graphic below highlights the minimal code change required with the associated performance boost.

IntelResults

“If you think about SSE, which we introduced more than a decade ago, it could do 2 double-precision numbers at a time or four single—and that was cool, said Reinders. “Then AVX comes along, which could do 8 single or 4 double precision floating point operations–but now we’re looking at Phi with AVX 512 and you can do 16 single floating point computations or 8 double-precision. It’s an incredible difference.

In other words, the hardware keeps finding ways to do more, but the difference between not doing vectorization versus doing it can be 16 to 1 with the Phi, for instance.”I’ve taught vectorization for a decade—it was one thing to get people excited about doubling code performance, but when it’s 16x it’s a big difference, too much to ignore.”

For those hoping to see what those performance improvements look like for other code, see the graphic below or find more details about the new updates in Parallel Studio here: https://software.intel.com/en-us/intel-parallel-studio-xe/

IntelResults2

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in advanci Read more…

By Tiffany Trader

ESnet Now Moving More Than 1 Petabyte/wk

December 12, 2017

Optimizing ESnet (Energy Sciences Network), the world's fastest network for science, is an ongoing process. Recently a two-year collaboration by ESnet users – the Petascale DTN Project – achieved its ambitious goal t Read more…

HPC-as-a-Service Finds Toehold in Iceland

December 11, 2017

While high-demand workloads (e.g., bitcoin mining) can overheat data center cooling capabilities, at least one data center infrastructure provider has announced an HPC-as-a-service offering that features 100 percent fre Read more…

By Doug Black

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be carefully woven together by people to create the computational c Read more…

By Alex R. Larzelere

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

SC17 Cluster Competition: Who Won and Why? Results Analyzed and Over-Analyzed

November 28, 2017

Everyone by now knows that Nanyang Technological University of Singapore (NTU) took home the highest LINPACK Award and the Overall Championship from the recently concluded SC17 Student Cluster Competition. We also already know how the teams did in the Highest LINPACK and Highest HPCG competitions, with Nanyang grabbing bragging rights for both benchmarks. Read more…

By Dan Olds

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This