New Degrees of Parallelism, Old Programming Planes

By Nicole Hemsoth

August 28, 2014

Exploiting the capabilities of HPC hardware is now more a matter of pushing into deeper levels of parallelism versus adding more cores or overclocking. What this means is that the time is right for a revolution in programming. The question is whether that revolution should be one that torches the landscape or that handles things “diplomatically” with the existing infrastructure.

While some argue for a “rip and replace” approach to rethinking code for the new era of computational capability, others, including Intel’s Director of Software, James Reinders, are advocating approaches that blend the old and new—that preserve the order of existing programming models while still permitting major leaps ahead for parallelism.

To these ends, Reinders described the latest release of Intel’s Parallel Studio XE 2015 for us this week, pointing to the addition of new explicit vector programming capabilities as well as the many features inside OpenMP 4.0., which is a significant part of the new release.

It’s not difficult to imagine the arguments in favor of holding steady with a consistent programming model for a manycore world, but few expect that slope will be simple to scale. At the heart of Intel’s approach to meshing the old and new approaches are some key features inside OpenMP 4.0, which Reinders says still amount to “hidden charms” that haven’t been fully explored by the HPC world yet. More specifically, he notes that three key elements to exploiting new hardware capabilities—tasking, vectorization, and offload—are not just present in OpenMP 4.0, they work together in unison and represent a turning point in how we will view the possibilities of preserving programming models and bases for the future generation of codes.

“The question is, can we keep the challenges limited to scaling across cores and vectorization to evolve into this new era instead—can we make that set of challenges the programming problem to solve versus learning exotic languages or abandoning the strong code base we have?” Reinders asked. In answer to this, he pointed to some new work his team at Intel, as well as partners around the world, are doing to enhance this possibility via OpenMP 4.0. in addition to their other Intel-specific math libraries and tools.

The issue right now with OpenMP 4.0 isn’t that the capabilities to achieve the new parallelism/existing programming environment goals. It’s still a matter of knowledge, training, and actual examples that show how the three goals of tasking, vectorization, and offload are working inside the same box with this newest release. Reinders says that the most frequent questions he’s getting now revolve around what’s inside the standard in general—it’s still in a “kicking the tires” phase that he hopes the community can move past, especially in this era of 244-way parallelism potential with the Xeon Phi.

He says some specific examples of the hidden charms of OpenMP 4.0 are contained within the new Collapse directive, which essentially lets the compiler handle the tasking across the cores in addition to vectorization at the same time. In another scenario, it would be possible to do offload and have a loop that addresses tasking and vectorization. In other words, users are doing messy things out of necessity to manage these aspects of performance gains with individual approaches instead of potentially tackling all three of the problems at the same time. The benefit of this is profound, Reinders argued, but said it’s still lost in the overwhelming early experimentation phase many are working through now.

The main addition to the release is explicit vector programming, which Reinders says is of increasing importance. This is an important feature because vectorizing will offer some profound performance improvements for HPC code, which also adds to overall efficiency since it can compute faster with the CPU being set at a lower power state. “The question these days is, how do we start getting codes to take full advantage of vector instructions in modern instruction sets. Languages like C and Fortran weren’t written with this in mind, so there have been a lot of hacks to hint to the compiler to vectorize over the years that aren’t so dissimilar to those were doing to get more parallelism in the 80s and 90s.”

Now, instead of going back and forth with the compiler to get it to auto-vectorize, the goal is to extend the languages so they still look like C and Fortran and let the compiler know that you’re ready to vectorize a loop even if there are some problems embedded in the language itself. In OpenMP 4.0, this is achieved through Pragma OMP SIMD, which is designed to minimize code changes when vectorizing code. It can be used to vectorize loops that the compiler normally wouldn’t auto-vectorize without all the hacks. The graphic below highlights the minimal code change required with the associated performance boost.

IntelResults

“If you think about SSE, which we introduced more than a decade ago, it could do 2 double-precision numbers at a time or four single—and that was cool, said Reinders. “Then AVX comes along, which could do 8 single or 4 double precision floating point operations–but now we’re looking at Phi with AVX 512 and you can do 16 single floating point computations or 8 double-precision. It’s an incredible difference.

In other words, the hardware keeps finding ways to do more, but the difference between not doing vectorization versus doing it can be 16 to 1 with the Phi, for instance.”I’ve taught vectorization for a decade—it was one thing to get people excited about doubling code performance, but when it’s 16x it’s a big difference, too much to ignore.”

For those hoping to see what those performance improvements look like for other code, see the graphic below or find more details about the new updates in Parallel Studio here: https://software.intel.com/en-us/intel-parallel-studio-xe/

IntelResults2

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This