HPC in Higher Education

By Rob Elder

October 21, 2014

Whilst HPC systems form a relatively small part of most organisations’ IT infrastructure, they often demand the most attention. They are like the disruptive child at school who make up 5% – yet demand 30% of the resources. As a result, HPC systems are relatively unique and pose quite a challenge to most organisations who have them.

There is often a lot of misunderstanding and miscommunication when discussing the deployment of HPC systems and the impact they can have on the environment in which they are located. This misunderstanding, to a lesser or greater degree, will depend on the type of organisation that is deploying the system in terms of resources, experience and scale. It will also depend on who is responsible for the HPC itself.

For example, HPC systems often require a very different approach to power and cooling design plus, in most cases, are not considered business critical so they do not demand the same levels of resilience as other IT running business critical applications. To add to the complexity, there are two main types of HPC: Air-cooled and Water-cooled.

So what is high density HPC? How do you cool it? What are the different characteristics of these systems?

There is often confusion in the industry when people talk about high density and various methods to cool it. In most cases, HPC systems are cooled by air. This is when air is delivered to the front of the equipment drawn through the servers and hot air is exhausted at the back. There is further confusion when solutions are described as being water-cooled when in fact cooling units are ‘close coupled’ with the IT equipment itself. Examples would be in-row or front or rear door cooling systems. Whilst this uses water as in a conventional chilled water system it is actually based on an air-cooled solution for removing heat from the server and is not a water cooled HPC. Some larger and more extreme HPC systems use Direct Liquid Cooling (DLC) or on chip cooling where heat is removed direct from the chip using water. At Keysource, this is what we mean when we talk about water-cooled HPC.

High density IT can vary but tends to be described as a server rack of equipment which draws a lot of power, upwards of approx. 15kW per rack. In this range we see HPC systems that are air-cooled drawing 30kW and in some cases closer to 40kW per rack position. Some water-cooled (DLC) systems can go as high as 90kW + per rack.

When it comes to who has responsibility for the HPC, it is often not the business or the IT department that is deploying an HPC but a department which is focused on a particular project. The challenge then, for many organisations, is where to site these high density systems and who should specify the power and cooling solution to deal with it. If you put it into the organisation’s main computer room it will potentially have a negative impact on the other IT systems in the data centre by creating hot spots or disrupting airflow. This is because the traditional or older business critical IT systems do not have the same characteristics as the HPC.

An alternative is to deploy the HPC in a new environment which is designed specifically for the HPC. This might work for larger deployments where the scale justifies the investment but in most cases this is not so. We see this approach in organisations where one pot of funding is provided for an HPC project and the project owner uses some of that funding to build a new environment. Because the aim is to buy as much compute as possible, the environment is often value engineered or underspecified due to a lack of investment or expertise in providing appropriate power and cooling solutions. Therefore, this often leads to multiple data centres or computer rooms in a given location managed and run independently or a mixture of solutions in the same environment, and in many cases, these end up costing more and are not fit for purpose.

Therefore the challenge is simple. How can we create an environment which caters for mixed density IT systems be it HPC, networking or traditional business critical ICT?

If we put Disaster Recovery to one side as we accept the approach to this varies between organisations, it makes sense to house IT systems in the same physical location where you can control access, provide suitable environmental conditions and manage the infrastructure. However, most organisations have data centres that are existing and don’t have the luxury of time or money, or it is not practical to simply start from scratch.

At Keysource, the aim and role is to create an environment which allows the organisation to deploy what they want, where they want, when they want. It sounds simplistic and so it should be. We shouldn’t put constraints on the organisation in what they can deploy when it comes to IT and we shouldn’t have to re-engineer a solution every time a new piece of equipment needs to be deployed.

IT and HPC solutions change rapidly, therefore, organisations who can take advantage of the latest technology often gain a competitive advantage. In the world of research and HPC it can be very competitive and access to funding is difficult, so having an environment which is designed to accommodate this type of technology can be the difference between winning a project and not. On top of this, utilising dedicated and joined up tools, such as Data Centre Infrastructure Management software, give operators and planners real time information and insight to help manage capacity and plan deployment in a pro-active way.

Another often misunderstood concept is that of efficiency. Deploying high density IT that runs hot is an excellent way to deliver maximum efficiency in the data centre. This is caveated on the basis that the environment is suitably designed to cater for these higher densities. Assuming it is, we ideally want all of these systems located in the same place so we can scale the infrastructure and maximise the efficiency across all systems. With longer term power availability in some areas being questioned, along with the increasing cost of power, any measure which can reduce demand and on-going running costs helps with the business case for any project. It also frees up money for further development and investment in HPC, which is the main focus for these projects in any event.

Operating efficiency and effective use of capacity is also impacted by resilience. In a typical or conventional data centre, we work to design solutions which in most cases provide concurrent maintainability or even fault tolerance with fully redundant M&E solutions. However, most HPC systems do not require the same level of resilience. In that case, it is important to right size supporting infrastructure and not over engineer solutions when HPC is involved. Due to the density and potential total load of HPC, providing this resilience across M&E systems can significantly increase cost and complexity especially when you factor in Uninterruptible power supplies, and standby diesel generators. Working with the technical experts of the HPC and other stakeholders it is important to understand the impact of down time on all systems from processing, data storage, networking and other business applications so we can provide the right solution to meet the needs of the application.

A recent project for University of Leicester in the UK saw the University’s core data centre upgraded from a traditional legacy computer room which was sized for 60kW of IT and able to cater for just 5kW a rack. The upgrade delivered an increase in mains power and a redesign of the power and cooling system to cater for up to 300kW of IT. The project was driven by a new HPC system called ALICE which would require racks up to 30kW in any position and up to a maximum of 30 racks. The solution was to create complete separation of the hot and cold aisles but unlike many designs the cooling was not coupled to the rack. Instead Keysource’s ecofris design was installed which delivered the required airflow and heat rejection for the entire room. Using the sophisticated control system airflow and temperature are controlled based on the load and demand of the HPC. This ensures the system is running in optimum configuration all of the time, matching performance with demand. As the system is room-based, it also meant traditional and business critical IT can be deployed in the same footprint so it did not need a separate solution and is not affected by the HPC. Given that the solution was designed before the vendor of HPC was selected, this really was a case of wanting to be able to put what you want, where you want, when you want. Subsequently, phase 2 has seen the facility upgraded to double capacity to 300kW of IT load.

In conclusion, HPC is an excellent opportunity to innovate and in most cases provides a great opportunity to improve on current designs and efficiency. If all teams can work together and look to engineer solutions which offer maximum flexibility, we can see some real step changes in the attitude and approach to the deployment of HPC.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Simulating Car Crashes with Supercomputers – and Lego

October 18, 2019

It’s an experiment many of us have carried out at home: crashing two Lego creations into each other, bricks flying everywhere. But for the researchers at the General German Automobile Club (ADAC) – which is comparabl Read more…

By Oliver Peckham

NASA Uses Deep Learning to Monitor Solar Weather

October 17, 2019

Solar flares may be best-known as sci-fi MacGuffins, but those flares – and other space weather – can have serious impacts on not only spacecraft and satellites, but also on Earth-based systems such as radio communic Read more…

By Oliver Peckham

Federated Learning Applied to Cancer Research

October 17, 2019

The ability to share and analyze data while protecting patient privacy is giving medical researchers a new tool in their efforts to use what one vendor calls “federated learning” to train models based on diverse data Read more…

By George Leopold

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

NSB 2020 S&E Indicators Dig into Workforce and Education

October 16, 2019

Every two years the National Science Board is required by Congress to issue a report on the state of science and engineering in the U.S. This year, in a departure from past practice, the NSB has divided the 2020 S&E Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

How Do We Power the New Industrial Revolution?

[Attend the IBM LSF, HPC & AI User Group Meeting at SC19 in Denver on November 19!]

Almost everyone is talking about artificial intelligence (AI). Read more…

What’s New in HPC Research: Rabies, Smog, Robots & More

October 14, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

NSB 2020 S&E Indicators Dig into Workforce and Education

October 16, 2019

Every two years the National Science Board is required by Congress to issue a report on the state of science and engineering in the U.S. This year, in a departu Read more…

By John Russell

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Summit Simulates Braking – on Mars

October 14, 2019

NASA is planning to send humans to Mars by the 2030s – and landing on the surface will be considerably trickier than landing a rover like Curiosity. To solve Read more…

By Staff report

Trovares Drives Memory-Driven, Property Graph Analytics Strategy with HPE

October 10, 2019

Trovares, a high performance property graph analytics company, has partnered with HPE and its Superdome Flex memory-driven servers on a cybersecurity capability the companies say “routinely” runs near-time workloads on 24TB-capacity systems... Read more…

By Doug Black

Intel, Lenovo Join Forces on HPC Cluster for Flatiron

October 9, 2019

An HPC cluster with deep learning techniques will be used to process petabytes of scientific data as part of workload-intensive projects spanning astrophysics to genomics. AI partners Intel and Lenovo said they are providing... Read more…

By George Leopold

Optimizing Offshore Wind Farms with Supercomputer Simulations

October 9, 2019

Offshore wind farms offer a number of benefits; many of the areas with the strongest winds are located offshore, and siting wind farms offshore ameliorates many of the land use concerns associated with onshore wind farms. Some estimates say that, if leveraged, offshore wind power... Read more…

By Oliver Peckham

Harvard Deploys Cannon, New Lenovo Water-Cooled HPC Cluster

October 9, 2019

Harvard's Faculty of Arts & Sciences Research Computing (FASRC) center announced a refresh of their primary HPC resource. The new cluster, called Cannon after the pioneering American astronomer Annie Jump Cannon, is supplied by Lenovo... Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This