Our Series Continues: Considering Cluster Lifecycle Management

By Deepak Khosla

October 22, 2014

In the first cluster management column, I discussed the importance of performing a needs assessment to ensure that an organization implementing its first HPC cluster designs a system that fulfills the requirements of its users and ultimately provides a positive ROI for the enterprise. It’s important to keep in mind there are no one-size-fits-all solutions in HPC implementation. Your cluster design – which includes critical elements such as selections of nodes, interconnects and operating system – will be unique based on your particular needs.

As explained in the first column, much of the needs assessment must focus on the software applications that will be run on the cluster because their operational parameters dictate selection of many critical system components, compute nodes being first on the list. Each application has an optimal memory bandwidth, expressed in terms of gigabits per second (Gbps), which it needs to run effectively for each CPU in the node. The key is choosing / designing a node that can most effectively support the Gbps rating of the application across the number of CPUs within the node

For the typical organization, even one implementing a small HPC cluster, there are often multiple applications that will be run on the system. In this situation, the Gbps rating of the most memory bandwidth-intensive application should be taken into account when deciding on compute nodes. So if the most demanding application requires 64 Gbps of memory bandwidth, a node with that throughput will accommodate not just the one application but also all those requiring less memory bandwidth. The size of memory in the node is the other important factor. The required memory per CPU or overall for each application will dictate how much memory needs to be designed per node.

There are, however, implementations in which one application is a memory hog compared to all of the others combined. In that case, it is often less expensive to install one or more large memory nodes (often called ‘fat nodes’) for that particular application, and ‘thin nodes’ to handle the other less demanding applications.

The number of nodes installed in the cluster will depend on many variables, but one of the most important is a business consideration. Multiple nodes accelerate the speed with which the cluster performs its processing and produces the answers desired by the organization. Driven by business requirements, some organizations may need their applications to generate answers in two hours, while eight hours is sufficient for others. Multiple nodes provide results faster and will be worth the extra investment by some organizations.

Another important element in cluster design is the need for local disk space on the node. This is dependent on data input/output (I/O) requirements of the applications that will run on the system. Each application is rated for a certain frequency and volume of data reads and writes. Some applications will require the local disk to provide temporary ‘scratch’ space to hold data generated during processing. If scratch is needed, the I/O bandwidth of the application will dictate how many drives to put in the local node.

Reading and writing data to and from local disks takes time. For some applications, the speed with which they can read/write data can be more important than the volume of data involved. These applications are considered ‘latency sensitive’ (needing low latency) with respect to disk I/O.

Bandwidth and latency both play roles in selection of disk drives for the node and can significantly impact the overall cost of the implementation. Generally speaking, applications with high I/O and low latency ratings require SSD drives, which are the most expensive. High I/O and medium latency applications can get by with SAS drives, middle of the road in price. If latency is not an issue for the application, SATA drives are sufficient and also the least costly.

In addition to local disks, the cluster will need to have access to data on some central storage to facilitate getting input data and storing output data which needs to be shared among all nodes, as well as with external users. These external storage devices will move data to and from the nodes through an I/O-interconnect. Typically, 1G or 10G connection per node may be sufficient for accessing shared storage. The reason is that since this is shared storage access, the throughput of the network or the storage itself is usually the limiting factor. For high throughput, low latency I/O needs, it is best to use local storage.

Another key implementation factor dictated by the applications is the need for an application-interconnect that allows nodes to communicate with each other. Some applications require low-latency communication among the nodes in the cluster, and some do not. For those that require latency in the single digit microseconds or throughput over 10Gbps, for example, InfiniBand (IB) is the best fit today.

At the other extreme, if the application only requires high volume data transfers at the beginning and end of the jobs, and has very light inter-node communication needs, then a single 1G or 10G interconnect could handle both I/O and application traffic. If Ethernet is determined to be sufficient, then even if the need is 1G today, it is still recommended to specify systems with the 10G built-in port to handle future growth as it is becoming the default configuration.

The final decision in the cluster design is the operating environment. Again, the applications drive this selection. Certain applications run most efficiently in specific operating environments, and this requirement is well documented for each application. For an organization running multiple applications on its cluster, the challenge is finding one operating environment that satisfies the specifications of all applications. This is usually the least expensive option.

Often, however, multiple applications will require more than one operating environment. One option at this point is to install separate sets of nodes, each running the desired operating system. But there is another option – set up the nodes to run in multiple operating environments by establishing a provisioning system to dynamically switch from one environment to the other when particular applications are running. While complicated, this provides flexibility to match the resources to the workload.

In the next column, I will address the steps to take in using your cluster design to find the vendor that can supply you with the right system.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire